
Evaluation of the Proposed QVTMerge Language
for Model Transformations

Roy Grønmo1, Mariano Belaunde2, Jan Øyvind Aagedal1, Klaus-D. Engel3,
Madeleine Faugere4, Ida Solheim1

1SINTEF, Forskningsveien 1, Pb 124, Blindern N-0314 Oslo

2France Telecom R&D, 2 Avenue Marzin, 22307 Lannion - France

3Fraunhofer Gesellschaft FOKUS Kaiserin-Augusta-Allee 31, D-10589 Berlin

4THALES Research and Technology, Domaine de Corveville 91404 Orsay cedex - France

Abstract. This paper describes the set of requirements to a model-to-model
transformation language as identified in the MODELWARE project. We show
how these requirements divide into three main groups according to the way
they can be measured, how to decompose them into different grades of support
and how they can be weighted. The evaluation framework has been applied to
the current QVTMerge submission which targets the OMG QVT standardiza-
tion.

1 Introduction

Model-Driven Development (MDD) is a current buzzword that includes many tech-
nologies to improve the productivity in software development. Perhaps the greatest
leap to make when adopting MDD is the shift from being code-centric to become
model-centric. However, models will become first-class citizens only when there are
suitable tools to ensure consistency and traceability between models on different
levels of abstraction and from different viewpoints. A key concept in MDD is model-
to-model transformation. Such model-to-model transformations define mappings
between models, for instance to support refinement between models on different
levels of abstraction. Model transformation makes it possible to derive models from
other models in a controlled and automized manner. It also simplifies the way one
relate models, for instance to ensure consistency. In the past few years many different
proposals have been suggested for doing model transformations [1-3]. These hetero-
geneous solutions raise a need to standardize the way model transformations are per-
formed. The OMG is currently finalizing a standard called QVT [4], for specifying
model-to-model transformations, where the models are instances of metamodels de-
fined using the Meta Object Facility (MOF) [5]. In this paper we evaluate the
QVTMerge language [6], which is one of the two competing submissions towards the
QVT standard.

Grønmo R., Belaunde M., Øyvind Aagedal J., Engel K., Faugere M. and Solheim I. (2005).
Evaluation of the Proposed QVTMerge Language for Model Transformations.
In Proceedings of the Joint Workshop on Web Services and Model-Driven Enterprise Information Systems, pages 87-96
DOI: 10.5220/0002565200870096
Copyright c© SciTePress

This work has been conducted in context of MODELWARE, an EU-supported In-
tegrated Project. An overall objective of MODELWARE is to improve productivity
in software development. This objective will be pursued by realizing the vision of
model-driven software development. To this end, model transformation is viewed as a
crucial technology. MODELWARE includes both research institutions, tool vendors
and end users, and this evaluation accommodates these different perspectives. We
performed this evaluation to be able to produce model-to-model transformation tech-
nology that meets the requirements in MODELWARE, and we hope to influence the
final stages of the ongoing standardization in OMG so that the standard meets the
identified requirements.

We have identified a set of MODELWARE evaluation criteria for model-to-model
transformation languages. Each criterion can be sorted in one of three categories
according to how to test it:
• Language inspection. Manual inspection of the language alone is enough to

evaluate the criterion.
• Example-dependant. In order to test such a criterion we need complete examples

that show how the language is used in practice.
• Tool-dependant. Such a criterion requires a tool implementation.

Note that for some of the criteria it may be debated to which category they belong
and if more than one category can be applied. Tools may implement additional func-
tionality not provided by the language itself. However, less vendor and tool depend-
ence is obtained if most of the criteria are satisfied by the language itself. Since no
complete QVTMerge compliant tools are available we will not cover the tool-
dependant criteria in this paper.

The criteria are presented in a template defining the rationale, scale, if the require-
ment is mandatory or optional, and weight. A rationale explains why the criterion is
considered important, scale explains the different levels of support, and weight is a
number between 1 (lowest importance) and 6 (highest importance). It is important
that the scale is defined precisely and in a manner that it is easy to evaluate the target
language. The importance level indicated by the weights is subjective and initial
MODELWARE judgments. These weights are critical to ensure that evaluated lan-
guages are ranked higher if they fulfill the most important requirements.

2 Language Inspection Criteria

This section contains the list of criteria that can be tested by manual inspection of the
inherent properties of the language. The criteria are sorted this way: mandatory re-
quirements first, then higher weights first.

Traceability (mandatory, weight=5). Rationale: This property will make it easier
for the user to understand how changes in the source will affect the target. It is also
useful when undesired target results are produced, as the tracing back to the source
element will be of important help in order to correct the source model or the defini-
tion of the transformation. Scale: 0 = No support, 1 = Manual support. The user must

88

explicitly express the elements to be traced. 2 = Automatic support. The language
automatically provides traceability of all the elements.

Unidirectionality (mandatory, weight=4). Rationale: Unidirectionality is the abil-
ity to specify transformations in one direction only. When we never need to apply the
reverse transformation it will be easier to concentrate only on the transformation one-
way. Scale: 0 = no support, 1 = support.

Complete textual notation (mandatory, weight=4). Rationale: Textual notation
enables users to define transformations without a graphical tool. Textual notations are
also often preferred for defining large, complex transformations since graphical ap-
proaches are hard to scale. Scale: 0=no support, 1 = support.

Black-box interoperability (mandatory, weight=4). Rationale: This enables the
reuse of any existing codes or scripts written in other languages, that otherwise would
need to be rewritten in the transformation language. Support requires that it is possi-
ble to specify references to external code within a transformation. Scale: 0 = no sup-
port, 1 = support.

Composition of transformations (mandatory, weight=3). Rationale: This is de-
sired in order to reuse several basic transformations to accomplish a more complex
task. Scale: 0 = No support. 1 = Sequence only. 2 = Supporting the five basic control
flow patterns [7] (sequence, and-split, and-join, or-split, or-join).

Graphical notation (mandatory, weight=2). Rationale: Graphical notations pro-
vide a higher-level view on the transformation and can more easily be communicated
than a pure lexical alternative. Scale: 0 = No support. 1 = Only parts of a transforma-
tion can be graphical. 2 = A single transformation can be fully defined graphically. 3
= Compositions of transformations (see separate property) as well as single transfor-
mations can be fully defined graphically.

Updating source model(s) (mandatory, weight=2). Rationale: In some cases it is
desired to update/complete an existing model instead of producing a new model.
Scale: 0 = no support, 1 = support.

Incomplete transformations completed with pattern parameters (mandatory,
weight=2). Rationale: This is a powerful construction for reusing large parts of a
transformation that otherwise would need to be copied into several transformations.
Scale: 0 = no support, 1 = support.

Modularity (optional, weight=6). Rationale: This will ease the comprehension
and development of transformations. Scale: 0=no support, 1 = support. Support for
this includes the possibility to split a transformation into several files, structure the
code in separate UML package, provide separate transformation rules or to group
methods inside classes, thus achieving fine grain modularity.

Reusability (optional, weight=5). Rationale: It is desirable to define transforma-
tions that capture common transformation rules that can be reused by other more
specialized or parameterized transformations. This will improve the ability to share
common knowledge, the ability to faster make new transformations and the ability to
maintain the transformations. Scale: 0 = No support. 1 point for each of these that are
satisfied: a) can import transformation library b) can specialize transformations.
Maximum score is 2.

Restricting conditions/pre-conditions (optional, weight=4). Rationale: This is
useful to ensure that the source model(s) provided to the transformation follows the
restrictions set by the transformation. It prevents the transformation from being used

89

incorrectly and provides the opportunity to give critical feedback to the transforma-
tion user. Scale: 0 = no support, 1 = support.

Bidirectionality (optional, weight=2). Rationale: When a transformation needs to
be defined in both directions as a relation between two models, it will be easier for
the user to define one bidirectional transformation than to define two separate trans-
formations for this purpose. The maintenance of a single transformation definition
will also be easier to maintain and it reduces the risk of errors. Scale: 0 = no support,
1 = support.

Multiple source models (optional, weight=2). Rationale: The input from more
than one source model may be necessary in order to produce the target. Scale: 0 = no
support, 1 = support.

Object orientation (optional, weight=2). Rationale: The principles of object ori-
entation will improve the reuse, maintenance and comprehension of transformations.
Scale: 0 = No support. 1 point for each of these four OO principles that are satisfied:
a) inheritance b) encapsulation c) identity/ instantiation d) late binding/ polymor-
phism. Maximum score is 4.

Learning Curve (optional, weight=2). Rationale: This property is desired since it
increases the chance of becoming widely adopted. The weight is low, since it should
not stop the introduction of a new way of programming style that has major advan-
tages but that is unfamiliar to most people. Scale: Measured as an answer to the ques-
tion: Is the transformation language easy to learn? (0 = Strongly disagree. 1 = Dis-
agree. 2 = Neither. 3 = Agree. 4 = Strongly agree)

Multiple target models (optional, weight=1). Rationale: It may be desirable to
produce more than one target model. Scale: 0 = no support, 1 = support.

3 Evaluating Ease-of-use Criteria by Examples

Most of the identified evaluation criteria were sorted in the language-inspection cate-
gory and the tool-dependant category. Only two of the criteria were identified as
being example-dependant: ease-of-use for simple and complex transformations.
These two criteria are of high importance, and they require some case studies on
reference transformation examples in order to be answered properly. The examples
have been defined by an evaluation team and one of the authors of QVTMerge has
assured that the language has been used in a suitable manner to solve the problem at
hand. There are two alternative ways of defining transformations with QVTMerge.
The first alternative uses predicate relations that declare the invariants that hold be-
tween source and target models (QVTMerge/Relations). The second alternative is a
constructive directional approach based on operations (QVTMerge/Mappings). The
evaluation has focused on the second approach.

All of the transformation examples have been defined using the concrete textual
notation of the mapping formalism. The examples are Enterprise Java Beans/UML to
Enterprise Java Beans/Java, XSLT to XQuery, UML Spem Profile to UML Spem
Metamodel, UML to Relational Database, Book to Publication, and EDOC to J2EE.
These examples cover both simple and complex transformations, vertical and hori-
zontal, structural and behavioral transformation examples.

90

Ease-of-use (mandatory, weight=6). Rationale: This property is highly desirable in
order to increase productivity and adoptability of a transformation language. Scale:
Measured as an answer to the question: Is the transformation language easy to use? 0
= Strongly disagree. 1 = Disagree. 2 = Neither. 3 = Agree. 4 = Strongly agree. Impor-
tant sub-questions that are useful to answer the main question: Is the transformation
language clear and understandable? Does it require a lot of mental effort to set up the
transformation? Is it easy to use the language to define transformations? Is it cumber-
some to use? Is it frustrating to use? Is it controllable? Is it flexible?

None of the examples are fully presented in this paper due to limited space. Below
is an extract from the EDOC [8] to J2EE (Java 2 Platform Enterprise Edition) trans-
formation example. EDOC defines how to model enterprise systems using UML,
while J2EE is a possible execution environment for EDOC models. This is a complex
platform-independent model (PIM) to platform-specific model (PSM) transformation
example.

module Edoc_To_J2EE (in edocModel:EDOC): j2eeModel:J2EE;
main () {
 edocModel.objects->firstPass();
 edocModel.objects->secondPass();
}
mapping firstPass(in EDOC::ModelElement) : JavaElement
 disjuncts Package_to_Package, ProcessComponent_To_Java_Interface {}
mapping secondPass(in EDOC::ModelElement) : JavaElement
 disjuncts
 PackageContainement,
 FlowPort_To_Method,
 Protocol_FlowPort_To_Method,
 OperationPort_To_Method, … {}
 mapping PackageContainement[in EDOC.PackageDef]():J2EE.JavaPackage {
 init {
 result := self.resolveone(J2EE.JavaPackage);
 }
 subPackages := self.ownedElement[EDOC::PackageDef]
 ->resolveone(J2EE.JavaPackage);
}

The transformation specification uses two passes. The first pass is used to create

the main structure and the data types, while the second pass is used to fill the detailed
contents of the target model. The disjunction declaration in the second pass chooses
separate rules for each target element to be created depending on the type of the
source element. The PackageContainment rule transforms from EDOC pack-
ages to J2EE packages. The pre-defined result keyword is used to assign the target
result object. subPackages refers to an association in the target metamodel which
defines that J2EE packages may contain other J2EE packages. The built-in re-
solveone method is used to retrieve all target objects of a given type that were
produced by a source instance in pass one. The final statement in the example assigns
subPackages to a set consisting of J2EE packages that has already been transformed
from EDOC packages in pass one.

When reviewing the example transformations some negative findings were discov-
ered that may be used to further improve the specification before it is finalized as an
OMG adopted specification:

91

• It is confusing when to use arrow and when to use dot for referencing part attrib-
utes/associations, built-in functions, inherited OCL functions etc.

• There is a mixture of procedural style with object-oriented style when defining
and invoking methods. Object method calls are object-oriented
(theXSLTRoot.P2P), while the signature uses an input parameter to represent
the object type on which we can invoke the method like in the code extract signa-
ture above. This makes it non-intuitive to understand the much used “self” key-
word that refers to the context parameter.

• It is hard to discover calls to the mappings rules. When doing transformations it
is crucial to easily see where calls are made recursively or to other mapping
rules. These calls cannot easily be distinguished from other calls to built-in func-
tions, attribute/association references or OCL functions. XSLT has a solution for
this by letting all calls to other mapping rules happen with the apply-templates
instructions.

In addition to the negative findings described above, some issues were controversial
because there were different opinions in the review group if the issues are negative
findings or not:
Long and cryptic expressions. Single expressions are sometimes very long and
cryptic to understand which requires a lot of mental effort. (Example: return :=
out Return { expressions :=
self.nodes[#Template][t|t.match = '/']->nodes->flatten()-
>NodeToExpression();) This is a heritage of OCL style and syntax.
QVTMerge introduces additional short-hands to avoid excessive verbosity in single
expressions – like the '#MyType' expression mapped as a call to the 'oclIsKin-
dOf(MyType)' pre-defined operation . It is not clear yet whether these additional
short-hands help on ease-of-use of the language. It is also possible for a transforma-
tion writer to split a computation in various lines using intermediate variables.
Two-pass. Some of the transformations use a two-pass approach in order to ensure
that some target instances are produced so that the resolve() methods will get the
proper element in a different context. This is a consequence of the explicit execution
strategy in QVTMerge/Mappings which might be perceived as an advantage or as a
disadvantage depending on writer preferences. An interesting issue here is to know
whether it is possible to handle automatically object resolutions - so that the language
user does not need to worry about this – without loosing the advantages of the ex-
plicit execution strategy.

The review of all the code examples shows nice program code structure, inheri-
tance, and modularity by separation into manageable mapping rules. We believe that
reusability and maintenance will be positive side-effects when the transformation
code is written as they were in the examples. The example-based ease-of-use evalua-
tion of the QVTMerge language shows slightly higher scores for complex than for
simple transformations and the combination of vertical and structural transformations
gets a lower score than the other categories of transformations. We need more exam-
ples in order to show that these trends are valid in general. But the overall average
ease-of-use is evaluated as approximately 2.5 on a scale from 0 to 4, where 4 is the
goal. It should be stressed that the evaluation of ease-of-use are subjective judgments
of the MODELWARE participants who performed the example-based testing.

92

4 Related Work

The QVT Request for Proposal (QVT RFP) [4] identified a list of mandatory and
optional requirements for submissions. Some of its requirements are focused on fit-
ting the new QVT specification into the set of existing OMG specifications so to
reuse and align well with existing recommendations. Many of the requirements of
QVT RFP coincide with MODELWARE. The QVT RFP has identified portability
and a declarative transformation language as requirements which are not directly
stated by MODELWARE. There are several MODELWARE requirements not men-
tioned in the QVT RFP: object-orientation, composition of transformations, multiple
source models, multiple target models, repetitiveness, black-box interoperability and
modularity. The purpose of the MODELWARE requirements is to measure the good-
ness and quality of the approach regardless of any compliance with existing OMG
recommendations.

Gardner et. al [9] and Langlois et. al [10] have reviewed the initial 8 submissions
to the QVT RFP and proposed recommendations for the final specification. Most of
their requirements are well covered already in this paper. Sendall and Kazaczynski
[11] proposes these desired properties: executability, efficiency, fully expressiveness
and unambiguity, clear separation of source model selection rules from target produc-
ing rules, graphical constructs to complement a textual notation, composition of trans-
formations, and “conditions under which the transformation is allowed to execute”.
They propose that declarative constructions should be used for implicit mechanisms
that are intuitive, but warns that too many implicit and complicated constructs may be
more difficult to understand than the more explicit and verbose counterpart.

The way to measure ease-of-use in this paper is inspired by Davis [12] who sug-
gests a decomposition of ease-of-use into sub-parts such as effort to become skillful,
mental effort, error prone etc. These sub-parts can be answered on a scale ranging
from strongly disagree to strongly agree. Davis has gone a lot further with his frame-
work than we have done in this work, by showing how to organize these sub-parts,
rank them, and use a questionnaire to compute final scores based on feedback from
several reviewers. Krogstie [13] has proposed a framework for measuring the quality
of models and modeling languages. Especially for graphical model transformation
languages this framework should be applicable.

5 Evaluation Summary of QVTMerge

This section presents the evaluation of QVTMerge. In the table below the M
(M=measured-scale-level) column shows the level of support and the S (S=score)
column shows the weighted score for the criterion. The values in parentheses show
the maximum value. Note that the level of support is downscaled to a value between 0
and 1 (0= no support, 1 = full support) by dividing by maximum scale level, which
ensures that the criteria are treated on equal scales before the weights are applied. A
final score can be computed by adding all the values in the S column. This is relevant
to compare QVTMerge with competing model transformation approaches.

93

Criterion How it is supported by QVTMerge M S

Ease-of-use
in simple
transforma-
tions

See section 5. 2.2
(4)

3.3
(6)

Ease-of-use
in complex
transforma-
tions

See section 5. 3 (4) 4.5
(6)

Traceability Fully automatic traceability is achieved by the four resolve operations
that can trace from any source object to any target object and vice
versa.

2 (2) 5 (5)

Unidirection-
ality

The language in textual as well as graphical notation directly supports
it.

1 (1) 4 (4)

Complete
textual
notation

Any transformation can be fully defined with the mappings part in
textual notation.

1 (1) 4 (4)

Black-box
interoperabil-
ity

A query operation, a mapping rule and transformation module may be
declared without a body definition. This means that the implementation
will be provided externally - for instance using Java.

1 (1) 4 (4)

Composition
of transfor-
mations

QVTMerge does not get maximum score of 2 due to the lack of possi-
bility to specify parallel control flows.

1 (2) 1.5
(3)

Graphical
notation

The maximum score of 3 is not achieved due to lack of graphically
specifying compositions such as “parallel split” and “synchronization”
which is not possible at all. It is assumed that single transformations
can be defined fully graphically although the specification states that in
some complex transformations OCL annotations are needed.

2 (3) 1.3
(2)

Updating
source
model(s)

The transformation signature allows input parameters which can be
specified as inout.

1 (1) 2 (2)

Incomplete
transforma-
tions com-
pleted with
pattern
parameters

QVTMerge/Mappings: A mapping may extend "abstract" incomplete
mappings.
QVTMerge/Relations: An abstract or checkable relation can be ex-
tended into executable transformations.

1 (1) 2 (2)

Modularity The transformation may be grouped into several separate transforma-
tion rules.

1 (1) 6 (6)

Reusability One point is given for the import module construction that enables one
to import other libraries, and one point is given for the ability to spe-
cialize transformations by the extension mechanisms extends,
merges and inherits.

2 (2) 5 (5)

Restricting
condi-
tions/pre-
conditions

This is supported by associating the source model with a modelType
with complianceKind = “strict”.

1 (1) 4 (4)

Bidirection-
ality

The textual relations part or the graphical notation enables bidirection-
ality.

1 (1) 2 (2)

94

Multiple
source mod-
els

The transformation signature allows any number of input parameters.

1 (1) 2 (2)

Object
orientation

Inheritance is supported by the three extension mechanisms extends,
merges and inherits. Polymorphism is supported for query and
mapping operations (through the virtual call mechanism). No specific
mechanism is defined for object identity or encapsulation.

2 (4) 1 (2)

Learning
Curve

One disadvantage is that there are many ways of doing the same thing,
using relations, mappings, graphical or textual. It is however possible
for a transformation writer to stick to a unique paradigm to minimize
the learning effort. Another disadvantage is that there are many implicit
constructions for shorthand notations that are hard to understand when
you are a newcomer to this language. Advantages are that the textual
language shares many similarities of both syntax and constructions with
well-known object oriented languages such as Java and c#, c++. Fur-
thermore the graphical notation is quite intuitive to understand.

2 (4) 1 (2)

Multiple
target models

The transformation signature allows any number of output parameters.

1 (1) 1 (1)

6 Conclusion and future work

This paper has identified 18 weighted evaluation criteria representing desired proper-
ties of a model-to-model transformation language. The list of requirements is more
extensive than all of the previously published efforts. We have also gone further than
previous efforts by defining six reference examples to measure the ease-of-use re-
quirement which is of uttermost importance but requires such case studies in order to
be measured. The evaluation of the current QVTMerge language shows that the man-
datory requirement of transactional transformations is unsupported (such support is
planned in a subsequent QVTMerge submission according the specification). Al-
though QVTMerge achieves maximum scores for many of the criteria, we have re-
vealed that the ease-of-use and learning curve of the QVTMerge language can be
further improved. The MODELWARE evaluation criteria presented here is applicable
to any model-to-model transformation language and can thus be used to rank model-
to-model languages.

The advantages of QVTMerge are the modularity, black-box integration and nice
structure of the program code into manageable separate transformation constraints
and rules. Also we should point out the flexibility and openness, allowing a writer to
select the kind of paradigm that is best appropriate to its transformation problem. We
have also identified some disadvantages. Because there are many ways to define a
transformation, using either the relations or mappings, textual or graphical, the learn-
ing curve for a user that would like to use all the possibilities, will be high. Many
different programming styles can be used and mixed including imperative, declara-
tive, object-oriented and procedural. All these options require more effort to be
skilled and it may cause messy code if used incautiously. We have also experienced
difficulties interpreting some of the single statements that are very long and cryptic.
Such expressions are commonly used and they require a lot of mental effort.

95

An available QVTMerge tool is necessary to evaluate tool-dependant requirements
such as performance, debugging functionality and robustness. Tool-dependant re-
quirements have also been specified within MODELWARE, but are not presented in
this paper due to limited space.

Acknowledgement

MODELWARE is a project co-funded by the European Commission under the "In-
formation Society Technologies" Sixth Framework Programme (2002-2006). Infor-
mation included in this document reflects only the author’s views. The European
Community is not liable for any use that may be made of the information contained
therein.

References

1. Bézivin, J., et al., The ATL Transformation-based Model Management Framework. 2003,
Université de Nantes: Nantes

2. Patrascoiu, O. YATL: Yet Another Transformation Language. in First European Workshop
on Model Driven Architecture with Emphasis on Industrial Application. 2004. University
of Twente, Enschede, the Netherlands.

3. Braun, P. and F. Marschall, Transforming Object Oriented Models with BOTL. Electronic
Notes on Theoretical Computer Science, 2002. 72(No. 3).

4. OMG, Object Management Group MOF 2.0 Query / Views / Transformations RFP.
2002,www.omg.org.

5. OMG, Meta Object Facility (MOF) Specification. 1997, Object Management
Group,www.omg.org.

6. QVT-Merge_Group, Revised submission for MOF 2.0 Query/Views/Transformations RFP
(ad/2002-04-10). 2004,www.omg.org.

7. Aalst, W.M.P.v.d., et al., Workflow Patterns. Distributed and Parallel Databases, 2003.
14(3): p. 5-51.

8. OMG, UML Profile for enterprise distributed Object Computing (EDOC) version 1.0;
OMG Adopted Specification ptc/02-02-05.
2002,http://www.omg.org/technology/documents/formal/edoc.htm.

9. Gardner, T. and C. Griffin. A review of OMG MOF 2.0 Query / Views / Transformations
Submissions and Recommendations towards the final Standard. in MetaModelling for MDA
Workshop. 2003. York, England, UK.

10. Langlois, B. and N. Farcet. THALES recommendations for the final OMG standard on
Query / Views / Transformations. in 2nd OOPSLA Workshop on Generative Techniques in
the context of Model Driven Architecture. 2003. Anaheim, California, USA.

11]. Sendall, S. and W. Kozaczynski, Model Transformation – the Heart and Soul of
Model-Driven Software Development. IEEE Software, Special Issue on Model Driven
Software Development, 2003.

12. Davis, F.D., Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Infor-
mation Technology. MIS Quarterly, 1989. 13(3): p. pp. 318-339.

13. Krogstie, J., Evaluating UML Using a Generic Quality Framework. UML and the Unified
Process, ed. L. Favre. 2003: IRM Press

96

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/technology/documents/formal/edoc.htm

