
Expanding Database Systems into self–verifying Entities

Kåre J. Kristoffersen and Yvonne Dittrich

IT University of Copenhagen⋆

DK-2300 S, Denmark

Abstract. The paper presentswork-in-progressaiming at deploying runtime ver-
ification techniques to check whether the state changes in a database system
conform with temporal business rules given as expressions in temporal logic.
A framework for tailoring enterprise database systems with temporal business
rules is defined and an algorithmic framework for checking temporal business
rules at runtime is presented. A prototypical implementation of a runtime verifier
(called Verification Server) based on this algorithmic framework is presented and
discussed.

1 Introduction

Runtime verification is a branch of verification in which a running program is super-
vised by a concurrrently runningverifier. In this paper we shall employtimed runtime
verification, in which time will be an important parameter in the task of the verifier.
Our idea is to use such a mechanism to monitor a running database system and hereby
at runtime check whether a sequence of states of a traditional database obey a set of
temporal business rules. In [5] an interesting framework for proving temporal proper-
ties of a databaseprior to execution is presented. That task is much harder and the
proof of correctness cannot be automated. In our approach, the proof (or dis–proof) is
established along with the execution of the database.

Temporal Business Rules and corresponding mechanism to check their success or
failure might be hard coded in business systems. Many such systems exists, like e.g. in
a library where customers (automatically) get a reclaim of their borrowed material after
one month. However, this approach restricts the flexibility to re-define temporal rules
at all or at least to anticipated areas. Using runtime verification techniques provides the
possibility to formulate and change general temporal business rules and to check them
without changing the business application.

Section 2 introduces the temporal logic we use as basis for temporal business rules
and the algorithmic base we developed for the checking these at runtime. Section 3
presents the design of an early prototype of the Verification Server. Finally, in Section 4,
we sum up our findings so far and present our future line of research on the subject.

⋆ This work is supported by the project NEXT which is a joint effort between Microsoft Business
Solutions and the IT University of Copenhagen.

J. Kristoffersen K. and Dittrich Y. (2005).
Expanding Database Systems into self–verifying Entities.
In Proceedings of the 3rd International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 65-70
DOI: 10.5220/0002563000650070
Copyright c© SciTePress

2 Temporal Business Rules

A state of a database is a pair(s, t) wheres is a discrete component representing a
snapshot of all the data (or more precisely those data that are relevantfor the temporal
business rules)andt is a time stamp. Usings, boolean constraints may be decided, such
as if the balance of a bank account is below a certain threshold. A temporal business rule
for a database is a specification on how the internalstateof the database may evolve over
time, and what should happen when a rule is satisfied (or the opposite) by the data in the
database: IF TC THEN Action1ELSE Action2, where TC is a temporal condition and
Actions 1 and 2 are some action to be performed. The core of ourtemporal conditions
are given byTimed LTL, LTLt, in the following abstract syntax (see also [1]):

φ ::= p | φ1 ∨ φ2 | φ1 ∧ φ2 | ¬φ | ALWAYS φ | ALWAYSc φ
| EVENTUALLY φ | EVENTUALLYc φ,

wherep ∈ AP andc ∈ IN .
The syntactic elements are: Atomic propositions, AP, whichcan be the occurence of

insert, update, delete or that an attribute in the database is above/below a certain thresh-
old. Further, logical connectives and then temporal operatorsALWAYS andEVENTUALLY
both of which may be equipped with a time boundc. Intuitively they mean the fol-
lowing: WhereALWAYS φ denotes that the formulaφ must hold in all timepoints,
ALWAYSc φ only requiresφ to hold in the comingc time units. Conversely, the formula
EVENTUALLYc φ requires that formulaφ is satisfiedbeforec time units have passed,
and thus it is a more restrictive operator thanEVENTUALLY which only requires the
sub–formula to hold at some point arbitrarily long away in the future. We shall use the
standard abbreviation such as expressing implication etc.as logical connectives, e.g.
φ1 ⇒ φ2 for ¬φ1 ∨ φ2 and to usetrue instead of¬p ∨ p. Using this language we may
formulate a temporal business rule for a vehicle assistancecompany in which the tem-
poral condition is the following, stating that assistancesmust not be given too frequent:

ALWAYS (new(C.Assistance) ⇒ ALWAYS30 ¬new(C.Assistance)).

Checking Temporal Business RulesThe algorithm in the verification server works by
a rewriting principle. For each new state encountered from the database, the algorithm
rewritesthe temporal constraints to a new formula which states what should hold from
now on. Such a new formula is called a residual formula. In thealgorithm below the
residual of formulaφ with respect to a timed stateσi is denoted byφ/σi.

Algorithm: Runtime Verification procedure
Let σ = σ0σ1 . . . be a timed trace, letφ be a formula, letexists(σi, time) be a

predicate which is true exactly whenσ containsσi andti = time and let forceEvalua-
tion() be a method which returns the systems current state, at the current time.

ψ := φ/σ0; i := 1; time := 1; sit := SIT (ψ)
while ψ 6= true ∧ ψ 6= false do

if exists(σi, time) ∧ si 6= si−1 then
ψ := ψ/σi

sit := SIT (ψ)

66

i+ +
end if
if time = sit then
σi := forceEvaluation()
ψ := ψ/σi

sit := SIT (ψ)
i+ +

end if
time+ +

end while
returnψ

Occasionally, the satisfaction (or falsification) of a formula is not triggered by a
change of state in the database, but rather by the elapse of time alone. To ensure that the
algorithm is timely complete we let the verification server compute the coming smallest
interesting timepoint (SIT) and insert an artificial state at such a time point1. See [4] for
a complete description of the algorithm. The rewrite principle is a timed extension of
the one in [3].

3 The prototypes

Based on the notation and algorithm introduced in the last section a second prototype
of the verification server was implemented. The verificationserver is designed as an
independent program running parallel to the business systems of the company. A first
prototype parsed a rule in LTL notation and verified trace of state changes to a simple
(one-table) database complied with the rule. Recently the first prototype was extended
to handle more than one rule with a more general way to interact with the database of
the business system. For each rule, an independent thread isstarted that takes care of the
verification of that rule. This also allows the different rules to be based on different time
units. In the momentary version, the verification server queries the database for relevant
state changes once each time unit specified as the basic time unit of the given rule. In
parallel a prototype for a rule builder is developed. We explore different alternatives
for the user interface to find a notation for the temporal business rules and a way to
construct them that both leads to correctly formulated expressions in LTL and allows
for a meaningful interpretation from a business point of view.

The system so far looks as depicted in figure 1. When the business rule expert wants
to insert a new rule, he opens therule builder (1)2. The system provides him with an
overview of the attributes he can base his rules on by querying the database for its data
model (2). He selects a table. When he is satisfied and presses the save button the rule
builder constructs an XML file (3) containing the LTL representation of the rule, the
time unit the rule is based on and sql statements to access thedata defining the states
the rule is observing. He then has to define what should happenin case of the violation

1 The discrete component of the artificial state is the one appearing in the most recent state
emitted by the database.

2 The numbers refer to the numbers in figure 1.

67

Business
Database

Rule Builder

Metadata about data

model.

SQL Queries

XML FIle

Tailor Notifier on what
to do in case of

success/violation

(2)

(1)

(3)

(7)

(8) Email

Notifier

Email
SMS
Business System

(4)

Verification Server

Thread 3Thread 2Thread 1

(5)

(6)
(6) (6)

Fig. 1.The system architecture.

of this rule in the administrator interface of thenotifier. (4) He decides that an e-mail
should be sent to the responsible person. Theverification server(5) parses the rule and
creates and internal representation of the rule for the transformation algorithm. A new
thread is started for the rule and parameterised with the respective sql queries and the
time unit for the rule (6). Each thread independently accesses the database to obtain the
information on state changes that are of interest when verifying the fulfillment of the
rule (7). When a rule is violated a notification is sent to the notifier. (4) The notifier
sends an e-mail (8) to the one responsible for expensive customers as specified by the
business rule expert.

4 Conclusions and future research

The prototypes described in the previous section provide a proof of concept for this gen-
eral way of checking temporal business rules. Our prototypesystem can handle several
temporal rules based on the state of different items in the database. The thread based
design allows to define different time units for the different rules. It is possible to define
different reactions, in case a temporal rule is broken. Besides sending a notification the
Verification Server continues checking that the database changes comply with the dif-
ferent rules. However there are several issues that still are subject to future exploration.
We plan to set up the verification server with a database to administer student projects
here at our university to explore the following issues.

Using the production Database as is, or defining a specific view The solution the data-
base prototypes implement today offers the whole database to the business expert to
define temporal rules. Also the verification server accessesthe database without re-
quiring any specific functionality on the database side. This solutions is very general
and requires no changes at the database side. However, in a normalised database, the
data belonging together from the business point of view is often distributed over sev-
eral tables. Data might be stored in a specific way due to requirements in the business
systems. Production databases often contain a huge amount of tables of which only few
might be interesting when defining temporal business rules.Defining a specific view for
the verification server would on the one hand allow to providethe user with a concise

68

overview of the kind of data relevant for the formulation of temporal business rules. It
would have the additional advantage that it would allow to change the database without
interfering with the already defined temporal rules. On the other hand it would constrain
the formulation of rules to what is provided in the view. As long as changes in the tem-
poral business rules do not go beyond that scope, the changescan be implemented by
the business expert. In case other parts of the database haveto be accessed, a database
expert has to extend the view.

Checking the whole data of only accessing changesIn the momentary implementation
of the communication between the database and the verification server, the verification
server queries the production table for data that fulfills the different boolean expressions
the rules are based on. This way relevant changes will automatically be recognized. For
large databases this might lead to performance problems, especially when short time
intervals are used as a base for the rules.

Another solution would be to only access changes to the data under observation.
This would require to create a buffer and specific triggers aspart of the database based
on the definition of the rules in the rule builder. This shouldbe possible but would
require to change the business database itself. The rule builder module would have
to keep track of the changes it implemented in the database and would have to undo
them in a controlled way when a temporal rule is change or erased. A third possibility
would be to implement an asynchronous observer pattern between the database and the
verification server. Here again, the database would have to be adapted based on the rules
defined by the user to create the events the verification server needs for checking the
temporal business rules.

Finding a suitable user interfaceResearch on End-User Development has shown that
users are able to handle complex computations defined in a formal way when the for-
malisms are presented in a professionally meaningful way. [6][8] We plan to experiment
with different kinds of user interfaces in order to find a suitable way to represent the
data temporal rules can be formulated about and to support the user in deploying the
possibilities that formalism offers. From a technical point of view the notifier and the
rule builder are two very different parts of the system. Froma business perspective the
definition of temporal rules and the definition of what shouldhappen in case of a vi-
olation belong together. Here the two tailoring interfacesmust be integrated. Another
issue that needs more exploration is the requirements such asystem poses on the or-
ganization: when business rules can be (re-)defined, the organization has to implement
procedures to decide what rules to implement.[7][2]

PerformanceSo far, we only tested the verification server based on toy examples. Im-
plementing a sharp version together with the project database of our university will
give us the opportunity to evaluate the design and performance of the verification server
when interacting with a small but realistic database. The performance of the concrete
verification algorithm as well as the influence of the different design possibilities for
the interaction with the database can then be evaluated under more realistic conditions.

69

Acknowledgments

Thanks to Bente B. Petersen, Divya R. Malemane, Bue Pedersen, Ulrik D. Olsen who
together developed the different prototypes the article isbased on as part of their Master
Theses.

References

1. Alur, R., Henzinger, T.: Logics and Models of Real Time: A Survey. Real Time: Theory in
Practice, Lecture Notes in Computer Science 600, Springer-Verlag, (1992), pp. 74-106.

2. Dittrich, Y., Lindeberg, O.: Designing for Changing Work and Business Practices. In: N.
Patel (ed.). Evolutionary and Adaptive Information Systems. IDEA group publishing, (2002).

3. Havelund, K., Ruso, G.: Monitoring Programs using Rewriting. Automated Software Engi-
neering (ASE’01), San Diego, California, (2001), IEEE Computer Society.

4. Kristoffersen K., Pedersen, C., and Andersen, H. R.: Runtime Verification of Timed LTL
using Disjunctive Normalized Equation Systems. Appears in Issue 89.2 of Electronic Notes
in Theoretical Computer Science (2003).

5. Kung, C. H.: A Temporal Framework for Database Specification and Verification. Proceed-
ings of the Tenth International Conference on Very Large Data Bases,Singapore, August,
(1984).

6. Patern, F., Klann, M., Wulf, V.: Research Agenda and Roadmap for EUD. Deliv-
erables of the Network of Excellence on End-User Development, December, (2003).
(http://giove.cnuce.cnr.it/eud-net.htm)

7. Trigg, R., Bødker, S. From Implementation to Design: Tailoring and theEmergence of Sys-
tematization in CSCW. Proceedings of the CSCW 94, ACM-Press, New York, (1994), pp.
45-55.

8. Stiemerling, O., Kahler, H., Wulf, V.: How to make software softer- Designing tailorable
applications. Proceedings of the Designing Interactive Systems (DIS) (1997).

70

