
A FRAMEWORK FOR PARALLEL QUERY PROCESSING ON
GRID-BASED ARCHITECTURE

 Khin Mar Soe, Than Nwe Aung, Aye Aye Nwe
University of Computer Studies, Yangon, Myanmar

Thinn Thu Naing, Nilar Thein
University of Computer Studies, Yangon, Myanmar

Keywords: Grid computing, parallel query processing, distributed query processing, query optimization, dynamic
programming.

Abstract: With relations growing larger, distributed, and queries becoming more complex, parallel query processing is
an increasingly attractive option for improving the performance of database systems. Distributed and
parallel query processing has been widely used in data intensive applications where data of relevance to
users are stored at multiple locations. In this paper, we propose a three-tier middleware system for
optimizing and processing of distributed queries in parallel on Cluster Grid architecture. The main
contribution of this paper is providing transparent and integrated access to distributed heterogeneous data
resources, getting performance improvements of implicit parallelism by extending technologies from
parallel databases. We also proposed the dynamic programming algorithm for query optimization and site
selection algorithm for resource balancing. An example query for employee databases is used throughout
the paper to show the benefits of the system.

1 INTRODUCTION

Today, both commercial and scientific applications
increasingly require access to distributed resources.
Where there is more than one database supported
within a distributed environment, it is
straightforward to envisage higher-level services that
assist users in making use of several databases
within a single application. The Grid is an ideal
environment for running applications that need
extensive computational and storage resources
(Oldfield, R., Kotz, D., 2001). Grid technologies
facilitate efficient sharing of data and resources in a
heterogeneous distributed environment. The need to
reduce response time is evident in decision support
applications in which human beings pose complex
queries and demand interactive responses.

There are perhaps two principal functionalities
associated with distributed database access and use.
They are distributed transaction management and
distributed query processing (Smith, J., Gounaris,
A., Watson, P., Norman W., Alvaro A.A.,
Sakellariou, R., 2003). This paper is concerned with

parallel query processing on the Grid which
describes a prototype infrastructure for supporting
parallel query optimization and evaluation within a
Grid setting. In Grid environment, finding the
answer of a user query will require translating it into
internal representations, structuring optimal query,
splitting it into parts, retrieving the answers of these
parts from remote nodes, and merging the results
together to calculate the answer of the initial query.

This paper presents an approach to parallel query
processing on Grid system. Query scheduling
including processor allocation and optimization that
support intra and inter-query parallelism for read-
only queries are discussed. The remainder of this
paper is organized as follows.

In Section 2, we briefly describe the related work
in parallel execution of queries in a Grid
environment. In Section 3, we present some
background theories about parallel query processing.
In Section 4, we present our design of the system.
We conclude our system in Section 5.

203
Mar K., Nwe Aung T., Aye Nwe A., Thu Naing T. and Thein N. (2005).
A FRAMEWORK FOR PARALLEL QUERY PROCESSING ON GRID-BASED ARCHITECTURE.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 203-208
DOI: 10.5220/0002555202030208
Copyright c© SciTePress

2 RELATED WORK

As stated in (Andrade, H., Kurc, T., Sussman, A.,
and Saltz, J., 2001)(Beynon, M. D., Sussman, A.,
Catalyurek, U.,. Kurc, T., and Saltz, J., 2001)(Dail,
H., Sievert, O., Berman, F., Casanova, H., YarKhan,
A., Vadhiyar, S., Dongarra, J., Liu, C., Yang, L.,
Angulo, D., Foster. I., 2003), several research
projects have been developed distributed data
management over the Grid. The Active Proxy-G
service (Alpdemir, N., Mukherjee, A., Paton, N. W.,
Watson, P., Fernandes, A. A. A., Gounaris, A.. and
J. Smith., 2003) is dedicated to be able to cache
query results, use these results for the parts of a
query that cannot be produced from the cache, and
submit the sub-queries for final processing at
application servers that store the raw data sets.
(Rodr´ guez-Mart´ nez, M., Roussopoulos., N.,
2000) proposed a database middleware (MOCHA)
which is designed to interconnect distributed data
sources.

Many types of environments for executing grid-
aware applications can be found in the literature.
(Gounaris, A., Norman W., Alvaro A.A.,
Sakellariou, R.)(Tierney, B., Johnston, W., Lee, J.,
Hoo, G., Thompson, M). In distributed database
systems, there is an infrastructure that supports the
deliberate distribution of a database with some
measure of central. In federated database systems,
we can see the systems that allow multiple
autonomous databases to be integrated for use within
an application, and in query-based middleware, there
is a query language that is used as the programming
mechanism for expressing requests over multiple
wrapped data sources. This paper is most closely
related to the third category, in that we consider the
use of parallel query processing for integrating
various Grid resources, including database systems.

3 PARALLEL QUERY
PROCESSING

Parallel query processing is a well established
mechanism in relational DBMS. The objective of
parallel query processing is to translate a high-level
query into an efficient low-level execution plan and
allocate processors to each operation in such a way
that the overall query execution time is minimized.
(Kossmann, D., 1998)(Lu, H., Shan, M-C., Tan, K-
L., 1991)(DeWitt, D.J., Gray, J., 1992)

3.1 Types of Parallelism

As pointed out in (Kossmann, D., 1998), the
methods for exploiting parallelism in a database
environment can be divided into three categories:
namely intra-operator, inter-operator(intra-query),
and inter-query parallelism. In intra-operator
parallelism, the major issue is task creation and the
objective is to split an operation into tasks in a
manner such that the load can be spread evenly
across a given number of processors. The second
form of parallelism is termed inter-operator
parallelism, meaning that several operators within a
query can be executed in parallel. This can be
achieved either through parallel execution of
independent operations or through pipelining
Thirdly, parallelism can be achieved by executing
multiple queries simultaneously within a
multiprocessor system. This is termed inter-query
parallelism. (Turek, J., Philip, S., Chan, M.S., Wolf,
J.L)

3.2 Exploiting Resources

There are many alternative approaches for the
queries to execute at the client machine at which the
query was initiated or at the server machines that
store the relevant data. These are query shipping,
which is executing the query at the server side, data
shipping, which is executing the query at the client,
and hybrid shipping, which is the combination of
above two.

Another important class of system in which
queries run over data that is distributed over a
number of physical resources is parallel databases.
Parallel databases are now a mature technology, and
experience shows that parallel query processing
techniques are able to provide cost-effective
scalability for data-intensive applications. The
purpose of a parallel database system is to improve
transaction and query response times, and the
availability of the system for centralized
applications.

4 ARCHITECTURE

The proposed design of the system is shown in
figure 1. The system implements a multi-threaded
runtime environment in order to simultaneously
handle queries submitted by multiple users, and also
to manage multiple connections with application
servers. The system also performs resource
balancing between multiple application servers using
a replication model that employs statistics that

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

204

depend on the current and past workload of an
application server.

Query Query

Compiler

Query
Metadata

Administrator

Query Manager

Grid Data
Resources

Grid
Computational

Resources

Cluster Grid

Local Node

Node A Node B Node C

Query

Figure 1: The design of the system

The pseudo-code like representation of the
parallel query processing structure is as follows:
Input : User Query
Output : Result of Query
Let I be Input Query
Let O be the set of Query Output
Let R be the result to be output
Let M be Query Meta-information
Let T be the Internal Representation of Query
Let S be the set of sub-Query
Let Ci be the client to execute the sub-Query Si
Let P be the Optimal Query plan
Accept I; // input Query
O Null;
R Null;
T Null;
T Translate(I, M); // map user-defined query

 to internal representation
P OptimizeQuery(T); // generate an
 optimal plan
{S} SiteSelection(P); // Processor Allocation
for ∀ Si in {S} do
{C} Ship-Query (Si) // sent sub-
 Query to selected node
for ∀ Ci in {C}do in parallel
 {O} ExecuteQuery(Si);
 for ∀ Oi in {O} do
 R R ∪ (Oi); // Combine partial
 results from each node

A representative query over employee databases
is used as a running example throughout the paper.
The query accesses the two employee databases on
different data nodes as follows:
SELECT e.name, budget(e.salary)
FROM Emp e, Dept d
WHERE e.salary > 100,000 AND
 e.work-id = d.dno;

In the query, e and d are two different table
views from two databases. Before submitting the
query, a global database schema has been
constructed to describe and combine the views of the
participating databases along with the budget
program. The following figure shows the sample
evaluation of this query.

Employee
1

Employee
2

filter-
item=100,000

join on work id,
dno budget

Result

Figure 2: Executing the sample query

We now describe the major components of the
system.

MDS (Metadata Directory Service):

The directory service in our system maintains all
the information needed in order to parse, rewrite,
and optimize a query. It stores the schema of the
database (i.e., definitions of fields, tables, databases,
link, integrity constraints, etc.) and the partitioning
schema (i.e., information about what tables have
been partitioned and how they can be reconstructed).
It also maintains the physical information such as
the location of copies of tables (replicas),
information about data nodes and process nodes.

User Query Translation:

The query compiler in our system has
responsibility for generating internal representations
for Structured Query Language (SQL) which may
access data and operation on many nodes. It uses
concept-based approach to translate the requests of
the user query. This approach hides heterogeneity
for user. It also takes care of data format, and map
from local to global schema. Figure 3 shows the
compiler of our system.

A FRAMEWORK FOR PARALLEL QUERY PROCESSING ON GRID-BASED ARCHITECTURE

205

Parser

Metadata

User
Query

Query
Optimizer

Query
Partitioner Scheduler Query

Execution

Figure 3: Compiler for Parallel Query Processing

Query Optimization:

Due to advances in network technology, modern
distributed systems can become very large and
complex. With the advent of automated tools for
data analysis and decision support systems, complex
queries are becoming common. In order to produce
results in minimum response time, query execution
needs to be optimized. (Ganguly, S., Hasan, W.,
Krishnamurthy, R)(Smith, J., Gounaris, A., Watson,
P., Norman W., Alvaro A.A., Sakellariou, R., 2003)(
Lu, H., Shan, M-C., Tan, K-L., 1991)

The query optimizer in our system transforms
internal requirements from translator into a
structured query (SQL) depending on the physical
state of the system in order to carry out by the
execution state. To do this, it follows the two-step
optimization paradigm, which is popular for both
parallel and distributed database systems. In the first
phase, the single node optimizer produces a query
plan as if it was to run on one processor. In the
second phase, the sequential query plan is divided
into several partitions or sub-plans which are
allocated machine resources by the scheduler.

One of our objectives of the optimization is to
better balance resource utilization. In inter-query
parallelism, decisions have to be made on allocating
the available processors among a number of
competing database operations running in parallel
and the overall objective is to minimize the query
response time. So, the partitioner and scheduler
perform the site selection process based on resource
balancing policy. In our system, we propose the
siteSelection algorithm is as follows:
Input : A set of Relations R1 , …, RN
Output: A set of available sites allocated balanced
Let S be the set of available sites
Let Si be the set of sites for Relation i
Let sitei be the site (resource) for relation i
1: for i=1 to N do
2: { Si Null;
3: {Si} Search_Available_Sites(Ri);
4: if |Si| = Null then
5: {Si} Find_Minimum_Resource_Site(Ri);
6: if |Si|>1 then

7: { sitei Select_Best_Site({Si});
8: {S} {S} ∪ sitei ;
9: update (sitei); /* to be located */
10: }
11: else
12: {
13: {S} {S} ∪ {Si} ;
14: update (Si); /* to be located */

15: }
16: }

The algorithm works one time for each relation.
First, it finds the sites that contains relation i. Since
there are many copies (replicas) of the table, there
will be many sites that match relation i. However, in
order to make resource-usage balancing, the method
Search_Available_Sites in our system finds only the
available sites (i.e the site which doesn’t use the
table i at that time).

If there is no available site i, the method
Find_Minimum_Resource_Site finds a site that has
relation i currently in use but a few other relations
taken. In other case, if there are many available sites
for i, we further choose the best (i.e most
appropriate) table for relation i. Otherwise, we can
use the only one site for i. Then we add this site to
the set S and update the site to be located. (i.e not
available for next relation i)

The basic algorithm for query optimization is
Dynamic Programming as follows.
Input: SPJ query q on relations R1,…,Rn ,n<= N
Output: A query plan for q
1: for i = 1 to n do {
2: optPlan({Ri}) = accessPlans(Ri)
3: prunePlans(optPlan({Ri}))
4: }
5: for i = 2 to n do {
6: for all S ⊂ {R1, … , Rn} such that |S| = i
 do {
7: optPlan(S) = null;
8: for all O ⊂ S do {
9: optPlan(S) = optPlan(S) ∪
 joinPlans(optPlan(O) , optPlan(S - O))
10: prunePlans(optPlan(S))
11: }
12: }
13: }
14: finalizePlans(optPlan({R1,….,Rn}))
15: prunePlans(optPlan({R1,….,Rn}))
16: return optPlan({R1,…., Rn})

The algorithm works in a bottom-up way as
follows. First, dynamic programming generates so-
called access plans for every table involved in the

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

206

query (Lines 1 to 4 in Figure 8). In the second phase
(Lines 5 to 14 in Figure 8), dynamic programming
considers all possible ways to join the tables. First, it
considers all two-way join plans by using the access
plans of the tables as building blocks and calling the
joinPlans function to build a join plan from these
building blocks. In the same way, dynamic
programming continues to produce five-way, six-
way join plans and so on up to n-way join plans. In
the third phase (Lines 14 and 15), the n-way join
plans are managed by the finalizePlans function so
that they become complete plans for the query.

The figure 9 show the single node logical plan
after compilation and the figure 10 shows multi-
node physical plan after partitioning and scheduling
resources.

scan e scan d
(salary > 100,000)

reduce
(work-id)

reduce
(dno)

function call
(budget(e.salary))

reduce
(e.name, budget)

join
(e.work-id=d.dno)

Figure 4: Single node plan

scan e scan d
(salary > 100,000)

reduce
(work-id)

reduce
(dno)

function call
(budget(e.salary))

reduce
(e.name, budget)

join
(e.work-id=d.dno)

exchange

exchangeexchange

 Figure 5: Multiple-node physical plan

Query Execution:

Our system is focused to run on a cluster grid
including resources such as PCs, workstations
connected by high performance networks/switches
(i.e, Gigabytes, Ethernet and Myrinet), running on
heterogeneous operating systems (i.e Windows,
Linux). In our system, we use Multi-Thread
Execution in which the decomposed and optimized
sub-queries are processed as each thread by the
servers in parallel. In execution queries, sometime
we use Data Shipping, but in many cases, we use
Query Shipping by acting a client as a gateway to
make inter-site joins. The final query result is
composed by joining the results of these sub-queries
by the client. The Multi-Threaded model can support
a high degree of parallelism. In this model, each
thread implements an interface comprising three
operations: send(), execute() and receive(). These
operations form the glue between the operations of a
query plan. The send and receive calls issued at the
MPI level in non-blocking synchronous mode, are
managed by multiple user level threads encapsulated
in the exchange operation. A parallel query can be
run as a parallel MPI program over a collection of
wide area distributed machines.

sub query sub query sub query

Execution

Threads Communication

MPI

data

Figure 6: Phases of query execution

The above figure shows the main phases of
query execution. The evaluator receives a set of sub
queries from the query compiler. First, the sub
queries are sent to the Grid nodes through the
network and, secondly, they are installed on them
via the MPI interface. The next phase involves the
execution of the operators comprising the query plan
as separated threads. This operator execution may in
turn lead to the moving of data between nodes, using
a flow-controlled communications infrastructure
which itself uses the MPI interface.

A FRAMEWORK FOR PARALLEL QUERY PROCESSING ON GRID-BASED ARCHITECTURE

207

5 CONCLUSION

The main goal of this work is to design and
implement the framework for supporting data
analysis applications in the context of highly
distributed environments, such as the computational
Grid. Our system concentrates the workload of
multiple clients in such a way that it is able to
leverage its own computational ability to based on
resource balancing capability. This approach results
in faster query responses, decreased use of network
resources, decreased utilization of possibly remote-
located application servers, and effectively better
utilization of available resources by partitioning and
concurrently executing sub-queries.

REFERENCES

Alpdemir, N., Mukherjee, A., Paton, N. W., Watson, P.,
Fernandes, A. A. A., Gounaris, A.. and J. Smith., 2003.
Service based distributed querying on the grid. In Proc.
of ICSOC, pages 467–482.

Andrade, H., Kurc, T., Sussman, A., and Saltz, J., 2001.
Efficient execution of multiple workloads in data
analysis applications. In Proceedings of the 2001
ACM/IEEE SupercomputingConference, Denver, CO.

Beynon, M. D., Sussman, A., Catalyurek, U.,. Kurc, T.,
and Saltz, J., 2001. Performance optimization for data
intensive grid applications. In Proceedings of the Third
Annual International Workshop on Active Middleware
Services (AMS2001), pages 97–105. IEEE Computer
Society Press.

Bouganim, L., Florescu, D., Valduriez, P., 1996. Dynamic
Load Balancing in Hierarchical Parallel Database
Systems. In Proc. of the Int. Conf. on Very Large Data
Bases (VLDB), Mumbai (Bombay), India.

Dail, H., Sievert, O., Berman, F., Casanova, H., YarKhan,
A., Vadhiyar, S., Dongarra, J., Liu, C., Yang, L.,
Angulo, D., Foster. I., 2003. Scheduling in the grid
application development software project. In Grid
resource management: state of the art and future
trends. Kluwer Academic Publishers Group.

DeWitt, D.J., Gray, J., 1992. Parallel Database Systems:
The Future of High Performance Database Systems,
Communication of the ACM, Volume 35.

Ganguly, S., Hasan, W., Krishnamurthy, R.. "Query
Optimization for Parallel Execution", ACM SIGMOD
6/92 California, USA.

Gounaris, A., Norman W., Alvaro A.A., Sakellariou, R.
“Resource Scheduling for Parallel Query Processing on
Computational Grid”, University of Manachester,
Oxford Road, Manchester M139PL, UK

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

208

