
A MODEL FOR POLICY BASED SERVICE COMMUNITY

Hironobu Kuruma
Systems Development Laboratory, Hitachi, Ltd.

1099 Ohzenji, Asao, Kawasaki, Japan

Shinichi Honiden
National Institute of Informatics/ The University of Tokyo

2-1-2 Hitotsubashi, Chiyoda, Tokyo, Japan

Keywords: access control, policy of community, federation, web services.

Abstract: Since the World Wide Web is an open system, it is difficult to maintain the information about services on
the Web in a centralized server. Therefore the service mediation system could be constructed by federation of
service communities, in which each community provides and mediates limited number of services according to
its own policy. The federation should preserve the policy of each community. Furthermore, (1) scalability, (2)
verifiability of policy compliance, and (3) flexibility to the change of federation relation should be considered
in implementing the federation. In this paper, we introduce a notion of policy of community based on access
control among players and show a community model that is aimed at specifying communications between
players compliant with policy. The community model provides function specification of the service mediation
system. Since a meta-architecture based language is used to describe community model, communications for
the cooperation of communities can be represented separately from the communications for service request
and provision. As the result, our community model (1) represents communications between players in a
modular way, (2) provides a basis for verification of policy compliance, and (3) encapsulates the dependencies
on partner communities.

1 INTRODUCTION

Service provision, usage, and mediation on the
web (Toyouchi et al., 2000) are becoming popular in
recent years. Since the web is an open system, there
may be much difference in the quality and trustwor-
thiness of the services. Therefore, the users have to
carefully read the agreements on usage of the service
and accept them before using these services. But it
is not easy to understand the agreement for every ser-
vice usage, and ordinary users may skip reading and
take risks of privacy loss etc., or abandon the service
usage.

A solution of this problem is to construct a com-
munity which is a gathering of players such as ser-
vice providers, users, and mediators under a policy.
In such a community, every member provides, uses,
and mediates services without agreements for each
service usage as far as their behaviours are validated
by the policy. For example, let us consider a hotel
reservation system shown in Figure1. In this system,
a customer requests the mediator to reserve a room,
and the mediator reserves a room in a suitable hotel on
behalf of the customer. If the system handles the mes-

sages only from the customers, mediator, and hotels
that agreed a certain policy, a community is formed
in which players trust the partners in the scope of the
policy. The communities may federate to construct a
larger community. Assume a flight reservation sys-
tem shown in Figure2. In this system, a customer
asks the recommender the flight which fits his require-
ments. And then the customer request the airline com-
pany recommended by the recommender to reserve
the flight. In the federation of the hotel reservation
community and the flight recommendation commu-
nity, how the system is constructed so that the cus-
tomers reserve rooms as well as flights? The feder-
ation should preserve the policy of each community.
Furthermore, (1) scalability, (2) verifiability of policy
compliance, and (3) flexibility to the change of feder-
ation relation are considered in implementing it.

In this paper, we describe a model for constructing
a policy based community. Though Role-Based Ac-
cess Control (Ferraiolo et al., 2001; Ferraiolo et al.,
2003) is a powerful approach for providing security in
a community, we focus on the secutiry among com-
munities. Our objective is to (1) introduce the notions
of policy of community and policy of federation in-

360
Kuruma H. and Honiden S. (2005).
A MODEL FOR POLICY BASED SERVICE COMMUNITY.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 360-366
DOI: 10.5220/0002554603600366
Copyright c© SciTePress

customers hotels

mediator

Figure 1: Hotel reservation service

customers flight reservation

services

recommender

Figure 2: Flight reservation servce

dependent of the policy of each player, (2) show a
model for implementation of federation, and (3) pro-
vide a basis for construction and verification of pol-
icy based service provision/usage/mediation systems.
The notion of the policy of community is introduced
in section 2 as an accessibility graph of player’s roles.
Based on the accessibility graph, policy preserving
federation is also defined. To support the implementa-
tion of policy based federation, we introduce a com-
munity model in section 3 and show an example in
section 4. We show related work in section 5 and con-
clude our approach in section 6.

2 ACCESS POLICY

To describe accessibility of players in a community
independent of individual players, we introduce a no-
tion of the policy of community.

2.1 Agent

In this paper, we refer to entities participating in the
service provision, usage, and mediation on the web as
agents. An agent may be a computer system which
processes services automatically, or a person who
handles the requests of customers via web. In the fol-
lowing, Agn denotes the set of all agents.

2.2 Role

A role is a name of task that agents have for provi-
sion, usage, or mediation of services. Typical roles
are service provider, requester, and mediator. LetRle
denote the set of all roles and

g : Agn → 2Rle

be a function which relates each agent to the set of
roles it plays.

2.3 Community

A community is a set of agents playing a role in pro-
vision, usage, and mediation of services. An agent
can be a member of more than one community at the
same time. In the following,Cmm denotes the set of
all names of communities, andRc represents the set
of all roles of community which has namec ∈ Cmm.

Let Ac be a community of namec ∈ Cmm :

Ac = {x|g(x) ∩ Rc 6= ∅}.

We assume that an agent plays at most one role in
a community at a time. That is;
for all a ∈ Agn andc ∈ Cmm, if there existX, Y
such thatX,Y ∈ Rc ∧ X,Y ∈ g(a), thenX = Y .

2.4 Policy of Agent

We define the policy of each agent as binary relation
of agentsp ⊆ Agn × Agn. For agentsx, y ∈ Agn,
(x, y) ∈ p represents thatx is accessible toy.

2.5 Policy of Community

For each communityc ∈ Cmm, we define the policy
of communityc as binary relationpc ⊆ Rc×Rc. The
policy of communitypc represents the accessibility
relationship of roles. That is;
for all X,Y ∈ Rc, X is accessible toY if and only if
(X,Y) ∈ pc.

Let p be the policy of agents andpc be the policy of
communityc. For allx, y ∈ Agn, x is accessible toy
if and only if there existX andY such that(x, y) ∈
p ∧ X ∈ g(x) ∧ Y ∈ g(y) ∧ (X,Y) ∈ pc.

2.6 Policy of Federation

A federation is a community of which roles are super-
set of roles of communities participating in the feder-
ation. In this paper, we define policy of federation as
the delegation relation of access rights between roles.
The policy of federation provides the basis for verify-
ing the preservation of communities’ policies partici-
pating in the federation.

For communitiesm andn participating in a fed-
eration, we define the policy of federation as a pair
Pmn ⊆ Rm × Rn. (X,Y) ∈ Pmn represents that the
rights ofX to access the roles inm are delegated to
Y . That is,Y is accessible to the roles ofm to which
X is accessible.

To extend the notion of policy of federation to fed-
eration of more than two communities, we introduce

A MODEL FOR POLICY BASED SERVICE COMMUNITY

361

1.broker 6.result

4.service_request

3.answer 2.recommend

5.result

requester agent provider agent

mediator agent

Figure 3: Communication for brokerage

reflective transitive closureP ∗. For all pairs of com-
ponent communitiesm andn of a federation,P ∗ is
the minimal set satisfying the following.

• Pmn ⊆ P ∗ andPnm ⊆ P ∗

• ∀X ∈ Rm ∪ Rn, (X,X) ∈ P ∗

• for all rolesX, Y , Z, if (X,Y) ∈ P ∗ ∧ (Y,Z) ∈
P ∗ then(X,Z) ∈ P ∗

2.6.1 Policy Preservation

Assume thatc1, ..., cm are communities participating
in federationc. Let p1, ..., pm be the policy of each
component community andpc be the policy of com-
munityc. Whenpc satisfies the following, we say that
the policy ofc preserves the policy ofci(1 ≤ i ≤ m)
under the policy of federationP ∗.

• pi ⊆ pc

• for roleY of ci, if (X,Y) ∈ pc then there existsX ′

such that(X ′,X) ∈ P ∗ ∧ (X ′, Y) ∈ pi

2.7 Example

2.7.1 Policy of Community

Let A be a community of brokerage in which agents
interact as shown in Figure 3; that is

1. a requester agent requests a service to the mediator
agent

2. the mediator agent requests the service to a
provider agent

3. the mediator agent provides the requester agent for
the service on behalf of the provider agent

On the other hand, letB be a community of recom-
mendation in which agents interact as shown in Fig 4;
that is

1. a requester agent requests a service to the mediator
agent

2. the mediator agent recommends a provider agent to
the requester agent

3. the requester agent requests the service to the
provider agent

1.recommend 2.answer

3.service_request

4.result
requester agent provider agent

mediator agent

Figure 4: Communication for recommendation

Let A.R, A.M , and A.P be the roles of requester
agents, mediator angents, and provider agents of the
communityA respectively. The policy of community
A is

pA = {(A.R,A.M), (A.M,A.P), (A.M,A.M)}

Similarly, the policy of communityB can be repre-
sented as follows, where the rolesB.R, B.M and
B.P represent the role of requester, mediator and
provider agents respectively.

pB = {(B.R,B.M), (B.R,B.P)}

2.7.2 Policy of Federation

In the federation ofA andB, let us require thatB.R
has access right thatA.R has to the roles ofA and
A.M has access right thatB.R has. The policy of
federationPAB , PBA andP ∗ are as follows.

PAB = {(A.R,B.R)}, PBA = {(B.R,A.M)}.

P ∗ = PAB ∪ PBA ∪

{(A.R,A.R), (A.M,A.M), (A.P,A.P),

(B.R,B.R), (B.M,B.M), (B.P,B.P)}

2.7.3 Policy Preservation

LetD be the community constructed by the federation
of A andB, and take the policy of the communityD

pD = pA ∪ pB ∪

{(A.M,B.M), (A.M,B.P), (B.R,A.M)}

Figure 5 shows the policy ofD. In this figure, the
circles represent roles and the dotted arrows represent
the policy of federation. The solid arrows represent
the policy ofD. For example, an arrow from X to Y
means that(X,Y) ∈ pD. With respect to the defini-
tion in section 2.6.1, we can see that the policy ofA
andB are preserved inpD.

2.7.4 Extension of Federation

The federation may be extended by the further feder-
ation with other communities. LetC be a community
of recommendation with the policy of communitypC .

pC = {(C.R,C.M), (C.R,C.P)}

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

362

A.R

A.M

A.P B.R B.P

B.M

Community A Community B

Figure 5: Policy preservation

A.R

A.M

A.P B.R B.P

B.M

Community A Community B

C.R C.P

C.M

Community C

Figure 6: Policy of community extended by further federa-
tion

Assume the policy of federation;

PCF = {(C.R,B.R), (C.R,A.M)},

PFC = {(A.R,C.R), (B.R,C.R)}.

The following policypE of communityE, which is
the federation ofC and D, is a policy which pre-
servies the policies ofC andD. pE also preserves
the policies ofA andB.

pE = pD ∪ pC ∪ {(C.R,A.M),

(C.R,B.M), (C.R,B.P), (A.M,C.M),

(A.M,C.P), (B.R,C.M), (B.R,C.P)}

Figure 6 shows the policy of communityE.

3 COMMUNITY MODEL

In the federation, the agents of each community are
required to be compliant with the policy of the com-
munity when they interact with agents of other com-
munities. Therefore, the implementation of a policy
based federation basically consists of restricting the
communications across the communities and adding
communications for cooperation of communities.

To support the implemention of the federation,
we introduce a community model which represents
the communications in federation hierachically. This
model is written in a modelling language whose syn-
tax is shown in Appendix A. The modelling lan-
guage introduces the notion of meta-hierarchy and
field; (1) meta-level description can be attached to
specify the dynamism of agent’s behaviour, and (2)
message passing is restricted to the range of agents
which share the same field.

3.1 Meta-level Architecture

In the modelling language, an agent is specified in
several levels. The lowest level is 0 level, which we
call the base level. Though the modelling language
does not fix the number of meta-levels, letn denotes
the highest level declared in the community model.
In the syntax of Appendix A, the number of “m”s at
<DESCRIPTION ID> show the meta-level. The be-
haviour of agent, such as change of state and transmis-
sion of a message, is specified in each level.

A message transmitted in leveli (0 ≤ i < n) is ma-
nipulated in leveli + 1; i.e. we can control the trans-
mission of the message by explicitly specifying the
process of dequeueing, passing to the receiver agent,
and enqueing to the message queue ini + 1 level.
The invocation of method ini level is performed by
execute method ofi + 1 level. Below we describe
the meaning of message invocation, whereN denotes
set of natural numbers representing meta-level,Msg
denotes set of message patterns, andFld denotes set
of fields.

Firstly, we define a function

acceptable : Msg × Agn × N → bool

which shows the existence of a method.

• if a method which fits in messagem is specified in
i level of agenta : acceptable(m,a, i) = true

• otherwise :acceptable(m,a, i) = false

Since any message transmitted ini level can be ma-
nipulated ini + 1 level, the message invocation by
messagem in i ≤ n level is decided by the following
function

executable : Msg × Agn × N → bool.

• i = n : executable(m,a, i) = acceptable(m,a, i)

• i < n : if the invocation ofexecute for m
is specified or nothing is specified (default as-
sumed) in i + 1 level, executable(m,a, i) =
acceptable(m,a, i)
if the messagem is rewritten to m′ and
execute is invoked for m′ in i + 1 level,
executable(m,a, i) = acceptable(m′, a, i)
otherwise :executable(m,a, i) = false

3.2 Message Transfer

A community model possibly contain several fields.
The message passing of agents are limited by the
fields; i.e. no message is passed from an agent to other
agents unless they stay in the same field. However, a
message can be transferred across the fields if it is for-
warded by agents placed in more than two fields.

Consider that an agenta1 in field f1 sends an i-
level messagem to a2 in field f2. Due to the message

A MODEL FOR POLICY BASED SERVICE COMMUNITY

363

manipulation specified ini+1 level, this message may
be passed to other agents and executed by them. We
define the functiontransfer :

Msg × (Agn × Fld) × (Agn × Fld) × N → bool

which shows the transformation of the message to an
agenta in f as follows.

transfer(m, (a1, f1), (a, f), i) =

forward(wrap(m), (a1, f1), (a, f), i + 1) ∧

executable(m,a, i)

wherewrap(mi) denotes the message which passes
the messagemi in i + 1 level. If wrap(mi) is not
specified ini + 1 level, default method is assumed so
as toacceptable(wrap(mi), a, i + 1) = true.

The functionforward :

Msg × (Agn × Fld) × (Agn × Fld) × N → bool

which shows the forwarding of messagem transmit-
ted froma1 in f1 to a2 in f2 in i level, is defined as
follows.
• i = n + 1

if f = f1 = f2 anda = a2 then
forward(m, (a1, f1), (a, f), i) = true
elseforward(m, (a1, f1), (a, f), i) = false

• 0 < i ≤ n
if there exists an agenta3 which forwardsm,

forward(m, (a1, f1), (a, f), i) =

forward(m, (a1, f1), (a3, f3), i) ∧

transfer(m, (a3, f4), (a, f), i)

otherwise

forward(m, (a1, f1), (a, f), i) =

transfer(m, (a1, f1), (a, f), i)

wheref3 andf4 are fields in whicha3 stays, and they
may be different.

3.3 Verification of Compliance with
Policy

The communications specified in the community
model should be compliant with the policy of the
community. This can be verifyed as follows.

Let us define a relationAcc which shows the access
between roles.

Acc = {〈X,Y 〉|∃a, b ∈ Agn(∃u, v ∈ Fld

(∃m ∈ Msg(X ∈ g(a) ∩ RU ∧ Y ∈ g(b) ∩ RV

∧transfer(m, (a, u), (b, v), 0))))}

whereRU andRV are the set of roles of communities
U andV respectively.

For the policy of communitypc, the community
model is an implementation ofpc if and only if

Acc ⊆ pc.

4 EXAMPLE OF COMMUNITY
MODEL

In this section, we show a community model for the
community illustrated in section 2.7.

4.1 Model of Each Community

In the community model, letA andB be fields and
place the typical agents which represent roles of com-
munitiesA andB in fieldsA andB respectively. The
communications shown in Figures 3 and 4 are per-
formed in the base-level of each agent. On the other
hand, we described the communications for coopera-
tion of communities in the meta-level of each agent as
follows.

The following are communications for cooperation
that are common in every mediator agents specified in
the 1 level.

• forward the message to the receiver agent which
shares the same field

• forward the message to the mediator agent if the
receiver agent is not in the same field

For the requester and provider agents in community
B, the following is specified in the 1 level to commu-
nicate agents in other community directly.

• ask the mediator agent for forwarding the message
if the receiver agent is not in the same field

The following are specified in the 1 level of media-
tor agents in communityA which behave as provider
agents when they receive request from agent in other
communities.

• manipulate the base-level messageanswer so as
to reply itself as a provider

• change the base-level message
service_request to broker message

4.2 Model of Federation

The communityD, which is the federation ofA and
B, is modelled as follows.

• add mediator agents of communityA to fieldB

• add mediator agents of communityB to fieldA

• to delegate a request to other mediator, a media-
tor which received arecommend message in base
level performs

– execute the message at base level
– if the request is satisfied, returnanswer mes-

sage
– otherwise forward therecommend message to

other mediators

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

364

requester

of A

broker

answer

result

service_request

result

recommend

field A field B

mediator

of A

mediator

of B
provider

of B

Figure 7: Message sequence (A to B)

recommend

answer

service_request

result

service_request

result

broker

field B field A

requester

of B
mediator

of B

mediator

of A
provider

of A

Figure 8: Message sequence (B to A)

• change the common communication in the 1 level
of the mediator agents ofA so that they reject the
message transfer from agents in other field, if the
receiver of the message is requester or provider
agent in fieldA.

Figure 7 shows the communication of a requester
agent ofA and agents inB when the requester agent
uses a service inB. Figure 8 shows the communi-
cation of requester agent ofB and agents inA when
the requester agent uses a service inA. In this figure,
dotted arrows show the communication in the 1-level.

4.3 Extension of Federation

The communityE, which is a federation of commu-
nitiesD andC, is modelled as follows.

• add mediator agents of communityA to fieldC

• add mediator agents of communityC to fieldA

• add the following behaviours to agents ofC when
they receive arecommend message

– execute the message at base level.
– if the request is satisfied, returnanswer mes-

sage.

recommend

answer

service_request

result

field Bfield A field C

requester

of B
mediator

of B

mediator

of A
mediator

of C

provider

of C

Figure 9: Message sequence (B to C)

– otherwise forward therecommend message to
other mediators.

Figure 9 shows the communication of requester agent
of B and agents inC when the requester agent uses a
service inC.

5 RELATED WORK

RBAC/Web (Kuhn et al., 1997) is an implementa-
tion of Role Based Access Control for Web services.
It controls the access to the information on the Web
based on the roles assigned to the users. The concept
that operations are associated with roles simplifies the
understanding and management of privileges. How-
ever, RBAC/Web does not support the federation we
described in this paper.

UDDI, Universal Description, Discovery, and Inte-
gration, is a registry for sharing information on Web
Services. It is also specification for service descrip-
tion and discovery. In the version 3 of the specifi-
cation, UDDI support the multiple registry interac-
tion and policy description for different registry im-
plementations. In our work, the policy of community
defines the accessibility relations in service provi-
sion/usage/mediation community and the community
model specifies the communications between players.
Therefore the UDDI registry can be used a basis for
the implementation of communities and their federa-
tions in our work.

Many works have been done in the research domain
of meta-level programming and reflection (Maes,
1988; Charlton, 1996). Adaptive Software Agents be-
have reflectively to adapt the change of their environ-
ments. The objective of these works is principally to
program agents that adopt their environments. The
objective of our work, on the other hand, is to provide
a method for developing service mediation systems
that are flexible with the change of federation rela-

A MODEL FOR POLICY BASED SERVICE COMMUNITY

365

tions. The agents in our community model provide
function specification of a service mediation system
which is to be implemented in ordinary programming
language. In the future, agents in a community model
may be implemented on the basis of adaptive software
agents so that they autonomously adapt and observe
the policies.

6 CONCLUSION

In this paper, we introduced a notion of policy of
service community based on access control among
roles and showed a multi-level communication model
for policy implementation. Our model (1) represents
communications in a hierarchcal way, (2) provides a
basis for verification of policy preserving communi-
cations and (3) encapsulates the dependencies on part-
ner communities.

Since the agents of our model are described in
multi-level, implementing them in ordinary program-
ming language is not an easy task. Our future work is
to develop a method for constructing service media-
tion systems from our model.

REFERENCES

Charlton, P. (1996). Self-configurable software agents. In
Advances in Object-Oriented Metalevel Architectures
and Reflection, pages 103–127. CRC Press.

Ferraiolo, D. F., Kuhn, D. R., and Chandramouli, R. (2003).
Role-Based Access Control. ARTECH HOUSE, Inc.

Ferraiolo, D. F., Sandhu, R., Gavrila, S., Kuhn, D. R., and
Chandramouli, R. (2001). Proposed nist standartd for
role-based access control.ACM Trans. on Information
and System Security, 4(3):224–274.

Kuhn, D., Barkley, J., Cincotta, V., Ferraiolo, D., and
Gavriella, S. (1997). Role based access control for the
world wide web. InProc. 20th National Information
Systems Security Conference, pages 331–340.

Maes, P. (1988). Issues in computational reflection. In
Meta-Level Architectures and Reflection, pages 1–35.
Elsevier Science Publishers B.V. (North-Holland).

Toyouchi, J., Funabashi, M., and Strick, L. (2000). Service
integration platform based on tina 3-tier model and in-
terfaces. InTINA 2000 CONFERENCE Conference
Proceedings, pages 21–26.

A SYNTAX OF MODELLING
LANGUAGE

<AGENT> ::=
<DESCRIPTION> ("," <DESCRIPTION>)*

<DESCRIPTION> ::=
"{" <DESCTIPTION ID> "|"
["attribute" <ATTRIBUTE>

("," <ATTRIBUTE>)* ";;"]
["method" <METHOD>

("," <METHOD>)* ";;"] "}"
<DESCRIPTION ID> ::=
agent_name
| "m(" <DESCRIPTION ID> ")"

<ATTRIBUTE> :=
variable_name ":" <TERM>

<METHOD> ::=
<MESSAGE PATTERN> ":" <STATEMENTS>

<MESSAGE PATTERN> ::=
message_name <TERM>*

<STATEMENTES> ::=
<STATEMENT> (";" <STATEMENT>)*

<STATEMENT> ::=
<CONDITIONAL> | <CASE>
| <ASSIGNMENT> | <EXPRESSION>

<CONDITIONAL> ::=
"if" <EXPRESSION>
"then" "(" <STATEMENTS> ")"
["else" "(" <STATEMENTS> ")"]

<CASE> ::=
"case" <EXPRESSION> "of"
(<PATTERN> ":" "(" <STATEMENTS> ")")+
["otherwise"":""("<STATEMENTS>")"]

<ASSIGNMENT> ::=
"let" <PATTERN>

<EXPRESSION> ::=
<MESSAGE TRANSMISSION> | <TERM>
| <PATTERN EXPRESSION>
| "forall" variable_name

"with (" <EXPRESSION> ")"
<EXPRESSION>

| "forsome" variable_name
"with (" <EXPRESSION> ")"
<EXPRESSION>

<MESSAGE TRANSMISSION> ::=
<TERM> "<-" <MESSAGE PATTERN>

<TERM> ::=
"(" <EXPRESSION> ")"
| agent_name "." field_name
| variable_name | "dequeue"
| "execute(" variable_name ")"

<PATTERN EXPRESSION> ::=
<PATTERN> "=" <PATTERN>

<PATTERN> ::=
<EXPRESSION> | literal

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

366

