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Abstract:  Today, sophisticated discrete-event systems are being designed whose complexity necessitates the 
employment of distributed planning and control. While using a distributed control architecture results in the 
overall system model consisting of a collection of independent models, today's commercially available 
simulation languages can only accommodate a single model. As a result, in order to use these simulation 
languages one must create a new system model that consists of a single model but yet models a collection of 
models.  Typically the communication among the distributed models is ignored causing inaccurate results. 
In this paper we use our simulation concept, also presented in this paper, to create a simulation tool that 
enables the simulation of distributed systems by using a collection of models rather than a single model. 
With our concept we create a methodology that accomplishes this by simulating the communications among 
the distributed models. Besides the benefit of not having to create a new model for simulation, this 
methodology produces an increase in accuracy since the communication among the models is taken into 
consideration. Furthermore this tool has the capability to control the system using the same collection of 
models.  

1 INTRODUCTION 

Flexible manufacturing systems represent an 
interesting control problem because they generally 
have its control architecture distributed among many 
different computers. While creating a controller for 
each subsystem is not difficult, coordinating the 
individual controller to perform a common task may 
be more challenging. Manufacturing systems are 
typically modeled using discrete-events. And 
discrete-event simulation is commonly used to 
evaluate possible alternative actions used in decision 
making. This leads to a modeling problem. Since the 
controller of the plant is distributed, that is it 
consists of many controllers running independently, 
and the simulation model must not be distributed 
how is one to model a system using a single model 
when the actual controller consists of a collection of 
models? Currently the solution is to create a new 
model that captures the control logic of the complete 
controller system. This of course requires writing a 
new model that hopefully captures this true control 
logic correctly including all of the communication 
among the controllers. In addition to representing a 

significant modeling effort, it leads to a source of 
error. This is especially true when you consider 
modeling the communication. In this paper we 
present a modeling approach that has the capability 
of accepting a collection of models. We can use the 
models that are used for control directly by simply 
including them into the simulation. Not only can our 
simulation handle the collection of models but it also 
automatically models the communication among the 
controllers. This paper is based on the simulation 
and control of distributed large complex systems 
whose behavior is characterized by discrete events 
such as a flexible manufacturing system, FMS. FMS 
produce many part types concurrently in very small 
quantities. These systems are difficult to control 
because they generally operate in a highly transient 
state.  

The following research efforts are related to our 
work. (Peters et al. 1996), (Smith et al. 1994) and 
(Smith and Peters 1998) have adapted Arena 
(Kelton, Sadowski and Sadowski 2001) to control 
their experimental FMS.  However, unlike the 
modeling approach to be discussed in this paper, 
their control architecture uses one hierarchical level 
where a single supervisor, the cell controller, 
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manages a set of subordinate processes.  In their 
modification of Arena, they have included special 
events in order to facilitate message passing among 
the controllers.  Furthermore, to model a complex 
FMS or other multi-level, distributed system, the set 
of modeling elements provided by ARENA, as well 
as most simulation languages, severely constrains 
the modeling process. This is particularly true when 
one attempts to assess the impact of the control 
architecture upon the system. (Davis et al. 1993) and 
(Davis 1998) details the numerous restrictions that 
current simulation languages impose upon the 
modeling of hierarchically distributed systems. 
(Mize et al. 1992) further discusses the inaccuracies 
that ensue from using current simulation languages 
in order to model an FMS.  

(Narayanan et al. 1992), (Govindaraj et al. 
1993) and (Bodner and Reveliotis 1997) have also 
developed simulation tools that are capable of 
controlling a system. They claim that the typical 
approach to address the complexity of FMS control 
systems is a hierarchical decomposition. A widely 
used decomposition features tree layers, Strategic 
Decisions, Tactical Decisions and Operational 
Decisions, (Arango and Prieto-Diaz 1991) and 
(Stecke 1985).  In (Bodner and Reveliotis 1997), 
(Govindaraj et al. 1993), and (Narayanan et al. 
1992), they claim that to handle lower level issues 
involving the real-time control, two additional layers 
are needed. The Structural and Equipment Control 
layers address issues such as deadlock avoidance. In 
these papers, hierarchical decomposition refers to 
the logical decomposition of the decision making 
process while we refer to it as the actual 
decomposition of the controller that yields a 
distributed controller. Incidentally they also claim 
that FMS exist but there are no controllers for them.  

The notions of multi-resolutional architectures 
and task decomposition have been discussed by 
many. The interested reader is referred to (Albus and 
Meystel 1995 and 1997) for a discussion of these 
terms. In the same reference, these authors discuss 
their reference architecture for distributed intelligent 
control and the associated real-time control system 
for its implementation. The major distinction 
between their architecture and ours, discussed 
below, is that they have separated the planning and 
control functions within a given controller. Our 
approach does not separate these functions. 
Secondly, we make heaver use of on-line simulation. 

2 THE DISTRIBUTED MODELING 
METHODOLOGY 

This methodology presents a very novel approach to 
simulating distributed systems using a single thread. 
It is assumed that the control architecture is 
hierarchical. Figure 1 shows a typical control 
architecture for an example system.  

 

 

Figure 1: The hierarchical architecture used in our 
physical model 

 

This methodology is based upon the belief that 
the interactions among the controllers must be 
considered by the simulation model in order to 
accurately model a system with a distributed control 
architecture. The single most important 
characteristic of the methodology and what separates 
it from other object-oriented simulation approaches 
is its attention to modeling the flow of messages 
among the controllers included within the 
architecture. By modeling the flow of messages, the 
methodology allows the simulation to accommodate 
any number of models. Recall that the controller is 
distributed. That means that there are many 
independent controllers each running with its own 
model. This methodology allows us to simulate the 
complete system using the models from the 
controllers (Gonzalez 2004). This has many 
advantages: 
 
1. The simulation is more accurate since it includes 

all of the communication among the distributed 
controllers. This was the original motivation for 
developing our methodology. 

2. The simulation produces maximum fidelity since 
the same models are used for both simulation and 
control. Model verification is a major effort in 
modeling usually requiring more effort then to 
actually build the model. Furthermore there is 
always the risk that the model does not represent 
the control logic correctly. Using our method 
reduces the chances of discrepancies between the 
models used for simulation and those used for 
control. This simplifies the verification phase of 
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modeling and produces a model that represents 
the true logic.  

3. The modeling effort is shared between control 
and simulation. They both share the same models 
so only one set is made. In fact without our 
methodology many more models will have to be 
created. Since each controller has a different set 
of subordinate controllers in its control domain, 
each one will need a different model. Only the 
model in the very bottom row will be able to use 
there exiting models. Each model will need to 
include its own logic as well as the logic of all of 
its subordinate controllers.  

4. The control and simulation models necessarily 
employ the same state definition since they are in 
fact the same code. This simplifies the task of 
initializing the simulation model to the current 
system-state. If the simulation and control 
models employ different state definitions, which 
is the case when one employs conventional 
simulation approaches, then one must translate 
the measured system variables into values for the 
state variable employed within the simulation 
model. This is a relatively large effort (Gonzalez 
and Davis 1998a). 

5. This methodology offers multiresolutional 
modeling for simulation. Since the system 
models have a hierarchical organization, the 
simulation resolution can be dynamically 
selected by selecting the levels in the hierarchy 
to include models for. For example, in Figure 1, 
if the top most controller wants to make a fast 
but rough decision it may only include the next 
level down. This increases the simulation speed 
at a cost of accuracy. Furthermore if a controller 
on the 2nd level wants to make a decision it will 
only include the 3 controllers below it since the 
others have no relevance to its decision. Since 
the models are independent, to vary the 
resolution we simply include the desired models 
with no extra modeling effort required.  

3 THE SIMULATION AND 
CONTROL TOOL 

In order to use the control models in the simulation 
directly a tool needs to be used that can run in 
control and simulation mode, in this way the same 
model, written for the same tool, can be used for 
both control and simulation. The state definition can 
then be simply the contents of the model’s variables 
without any need for interpreting the information in 
these variables. We have developed a tool based on 
this methodology. This tool is described in more 
detail in (Gonzalez and Davis 2003). The goal for 

developing this software tool is to provide a 
simulation approach using C++ that provides the 
modeling convenience of a conventional simulation 
language while providing the additional modeling 
capabilities that are needed to control a real-world 
system, particularly hierarchically distributed 
systems.  A set of C++ objects was developed in 
order to provide the basic necessary modeling 
elements that are employed in nearly all simulation 
and control scenarios, irrespective of which 
modeling methodology is being employed. 
In this tool each included modeling element is 
represented as an object in C++.  As with most 
simulation approaches, the adopted simulation 
approach is event-driven, and an executive object 
manages the sequential processing of events.  Two 
event lists (discussed below) are maintained where 
the events are stored as they wait to be executed at 
the proper simulated time. The simulation object, 
Figure 2, is a C++ object that contains the scheduled 
event list, pending event list, list of resources, the 
executive function, a pointer to the system model, 
and the communication object that interacts with the 
hardware. The executive function manages the 
chronologically ordered scheduled event list and the 
pending event list.  It manages the processing of the 
events as they are removed from the event lists, 
schedules new events that are to be placed into either 
the scheduled or pending event list, and manages the 
allocation of resources.  After each event is 
processed, the simulation object removes the next 
event with the smallest event time from the event list 
and then invokes the proper object to manage the 
event’s execution. 
 

 
 

Figure 2: The Executive Object. 

 
Using a streamlined approach, there are two 

basic types of events that can occur.  The 
QUESEIZE event occurs when resources become 
available for assignment to a requesting entity.  The 
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DELAY event occurs whenever a delay is 
completed.  There are also other types of events that 
provide capability for control but which are not 
considered in most simulation tools, including the 
PENDING, TIMEOUT, and ERROR events.   

In order to run, the system model must be 
attached to the simulation object. A communication 
function must also be provided to the simulation 
object in order to permit this object to communicate 
with the hardware when the model is running in a 
control mode.  This function handles all of the 
communications among the distributed controllers 
and the various machines. 

The simulation object can operate in the 
following two modes: 
 
Simulation mode:  In this mode, the system clock 

advances in discrete increments.  Every time an 
event is pulled off the event list, the time is 
incremented to the event’s time of occurrence.  
No hardware is present.  The model executes 
purely as a software program.   

 
Control mode: In control mode, the system clock 

runs in real time.  That is, the system clock is a 
conventional clock, like the one on the wall, 
where time advances continuously.  The events 
are pulled off the event list when their event time 
occurs.  Hardware may be present.  The pending 
event list is used to allow the executive function 
to determine when events occur.   

4 DISTRIBUTED MODELING 

In order to build the complete simulation model, one 
simply includes all of the simulation objects into a 
single program along with the coordination object.  
The coordination function within the coordination 
object coordinates the execution of all of the 
simulation objects. It also has the global event list 
and the message relay discussed later. When the 
distributed model is executed upon a single 
computer, only one of the simulation objects can be 
executed at a given time because there is only one 
computational thread.  In order to emulate all of the 
simulation objects operating concurrently on a single 
processor, the coordination function executes one 
simulation object for a short time and then switches 
to another object. The coordination function uses its 
global event list and its message relay to determine 
which simulation object to execute next. The 
individual simulation objects return control back to 
the coordination function when it is done executing 
all of the events that occur during that instance of 
time. Note that in simulation, the time it takes the 

computer to execute the segment of event code that 
handles is usually neglected, and an event can be 
assumed to occur in an instance of time. 
Furthermore, if an event triggers the immediate 
execution of another event, then this second event is 
assumed to occur at the same instant of time. This is 
why the coordinating function has the liberty to give 
control to an individual simulation object for the 
duration that it takes that object to execute an event 
while meeting the stated objective of emulating 
concurrent operation.   

In a nondistributed simulation of the system, the 
executive function constantly cycles in a loop.  This 
loop starts by checking the event list for the next 
event.  It then executes this event.  After executing 
the event, it checks to see whether there are any new 
events resulting from the execution of this event. An 
event may cause a second event to execute by the 
releasing of resources. Thus, the execution of an 
event may cause a chain reaction.  All the events in 
this chain are executed within this single executive 
function cycle.  In control mode, at the end of the 
current cycle, the executive function checks to see 
whether any message has arrived from the 
communication pipelines.  If a message has arrived, 
the pending event list is then checked to find the 
proper event to be executed.  In either mode, the 
executive function then initiates a new event-
processing cycle.   

In order to permit several executive objects to 
operate concurrently while in the control mode, the 
executive function is modified so that it cycles 
through the loop only once every time it is called.  
Furthermore, it does not check the communication 
pipelines at the end of the cycle.  All the 
communication is handled by a message relay 
contained within the primary executive function.  
The executive function is responsible for calling the 
executive function of the model that will execute the 
next event.  At this time, the submodel’s executive 
function cycles through the event-processing loop 
once and then returns program control back to the 
coordinating function.  This method of sharing the 
computing processor operates on a similar principle 
as many multi-tasking operating systems. 

Another special feature of our simulation tool is 
the manner by which messages enter the model.  
Instead of checking the communication lines every 
time the executive function reaches the end of an 
event processing cycle, the lines are not checked at 
all.  Rather, the coordination function manages the 
flow of messages.  Whenever a message is present, 
the coordination function calls the executive 
function of the appropriate submodel’s object and 
provides it with the message. The executive function 
of that object then handles the message by executing 
the proper events in the same way that it previously 
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handled a message when it was responsible for 
detecting the message arrival.  We adopted this 
approach to insure that a single entity, namely the 
coordination function, was responsible for 
monitoring the arrival of all messages. 

The last feature in our simulation software is the 
DELAY modeling element.  When a DELAY 
element is executed, in addition to scheduling a 
DELAY event onto the submodel’s scheduled event 
list, it also automatically schedules a DELAY event 
into the coordination object’s global event list as 
well.  Using this approach, the coordination function 
maintains a chronologically ordered, global event 
list with all of the events associated with every 
simulation object. The coordination function uses 
this global event list to determine which simulation 
object will be invoked next. Since the scheduling of 
events into this global event list occurs 
automatically, the user does not need to consider this 
global event list when modeling a local delay.  From 
the user’s point of view, the delay is modeled in the 
same way as if the model were not a member of a 
collection of distributed simulation objects. As a 
matter of fact, no part of the submodel has to be 
modified to accommodate the distributed simulation. 
Each submodel executes as though it is running on 
its own dedicated computational thread. This is 
important because it allows the modeling engineer to 
implement a distributed model the same manner as 
when the model was not distributed.  Again this 
feature is essential because the model will be used 
both to project the response and to control the 
system. 

5 THE COORDINATION 
FUNCTION 

The coordination function is a supervisory function 
that manages the execution of all of the submodels’ 
simulation objects. The coordination object contains 
a global event list and a message relay.  This 
function runs in a cycle much the same way the 
simulation objects do when running independently 
(not as part of a distributed simulation). In the 
typical simulation mode, the event-processing cycle 
starts by removing the next event from the global 
event list and passing it to the appropriate submodel 
for execution. While a submodel is being executed, 
the message relay, which acts as the network, 
receives all of the messages that are generated by the 
submodel that is currently executing.  These 
messages are stored in the rear of the message queue 
within the message relay, which is used to model the 
network.  Once the submodel finishes executing its 
current event-processing cycle, the coordination 

function removes the first message from the front of 
the message queue and passes it to the recipient 
submodel.  The submodel then receives the message 
and executes the appropriate functions that are 
needed to handle the message.  Additional messages 
may again be generated and are inserted at the rear 
of the message queue.  Once control is returned to 
the coordination function, it removes the next 
message from the front of the message queue and 
recycles it though the message-processing loop.  
This procedure is repeated until no messages remain 
in the message queue.  At this time the coordination 
executive function finishes its cycle and begins the 
next cycle by removing the next event in the global 
event list and passing it to the appropriate simulation 
object.  

 
Global Event List

Message Relay
1

2

3

 
Figure 3: Simulation involving 3 models 

The events in the global event list tell which 
submodel will address the event and the time at 
which the event occurs.  When an event is pulled off 
the list, the simulated time is then advanced to the 
next event’s event time.  The event type is not 
recorded on the global event list, as this information 
is contained within the submodel’s local event list 
and need not be duplicated.  The coordination 
function then calls the appropriate submodel and 
passes it the current simulated time.  The submodel, 
knowing that it is responsible for executing the next 
event, pulls the next event off its local event list and 
executes it.  As stated above, it only executes its 
executive function’s event processing cycle up to the 
point where the communication lines are to be 
checked.  At this point, program control is returned 
to the coordination function where the function then 
checks the message relay and continues its cycle.  
See Figure 3 above. 
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6 AN ILLUSTRATIVE EXAMPLE  

The following section illustrates an example of a 
real physical system that is controlled using a 
distributed model.  A simulation using the same set 
of distributed models for the considered system is 
also performed.  Each of the sub models for the 
included controllers was programmed using the 
simulation tool discussed above.  In Gonzalez and 
Davis (1998b), the physical system is discussed in 
greater detail while in Gonzalez and Davis (1997) 
the employed simulation model is discussed. 

The physical system is a model of a flexile 
manufacturing system. The schematic for the 
constructed FMS emulator is shown in Figure 4 and 
a photograph is depicted in Figure 1. This model 
provides a testbed for the development of the 
simulation and control tool that is needed to manage 
the system.  Note that since we are assuming the 
system is a real FMS, we thus have modeled it using 
a collection of independent models.  
 

Machine 1

Machine 4

Machine 2

Machine 3

Fixturing
Stations
1 and 2

Dedicated LAN

Cell
Controller

MHS (PLC)
Controller

To Network Server

5ft. x 10 ft. Table

HO Gauge Train Track

Entry Point
from Shop Level 

Exit Point
to Shop Level

 
 

Figure 4: Schematic for the constructed FMS physical  
model. 

 
The emulator has four Processing Centers, 

numbered 1 through 4.  Each Processing Center (PC) 
contains one primary processing resource and a 
dedicated Material Handling System (MHS).  Within 
the emulated FMS (see Figure 3), another process is 
the Fixturing Center (FC).  The FC has a dedicated 
MHS consisting of a primary carousel capable of 
holding sixteen jobs and two smaller carousels for 
loading and unloading jobs from the Automatic 
Guided vehicle (AGV).  The movement of these 
carousels is controlled by a dedicated controller.  
The FC has two fixturing positions that represent the 
subordinate unit processes. The final subordinate 
process is the cell’s MHS.  AGVs are employed as 
the primary material handlers at the cell level and 
are modeled with an HO-scale electric train. In this 
layout, there are over forty track segments that can 

be individually powered.  Sensory switches are 
provided on each track segment to detect the 
presence of an AGV.   
 

 
Figure 5: Photograph of the hardware model 

 
In constructing this control architecture, 25 

independent copies of the simulation tool was 
employed, each with its own model of the subsystem 
that it is addressing and all running concurrently, see 
Figure 1.  The only thing that ties them together into 
a single-control architecture is the communication 
among them. The communication is performed 
across a local area network (LAN) connecting seven 
computers where the cell controller and each of the 
cell’s six subordinate controllers are situated on their 
own computer.   Additional communication links are 
provided via RS-232 links between the FC and PC 
controllers and their dedicated hardware controller 
boards.  

In this example, the developed model controlled 
the physical system. The controller was given a total 
of three jobs, each with two processing steps. Each 
processing step required the part to be moved to a 
different machine. In addition to the processing of 
the part, before and after each processing step the 
part had to be moved to the fixturing center for 
fixturing. There were four Sun Work stations and six 
controller boards. The software controllers were 
distributed among the four workstations.  Each 
controller board controlled the hardware that was 
attached to it. The same model was employed to run 
the simulation in order to project the future 
performance of the system given its current state. 
The state of the hardware is used to initialize the 
state of the simulation models. However since they 
are in fact the vary same software code the state 
transfer simply represents a straight forward 
initialization of each variable in the simulation 
model from the corresponding variable in the control 
model. No interpretation as to the physical meaning 
of these variables data is necessary. The message 
transcript for both the actual run and the simulation 
run were similar. The only difference was due to the 
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discrepancy between the estimated and actual 
duration times.  No changes had to be made to any 
of the models in order to switch from using them for 
control or simulation. 

Since there is no tool that can accept a collection 
of models, simulating this system with commercial 
simulation software like ARENA will be impossible. 
The method that is commonly used to model 
distributed systems is to create a new equivalent 
simulation model that is not distributed. This 
however represents a considerable modeling effort. 
For example, the complete modeling effort for our 
system, including the models for control as well as 
the simulation models, is cut by 72% over using a 
conventional modeling tool. Using a conventional 
tool would have resulted in a modeling effort 
equivalent to writing models for 88 units where as 
we only wrote 25 models, one for each of the 25 
units. And this does not include the extra modeling 
effort that goes into modeling the communications 
among the controllers, which, for our system is 
integrated into the tool and therefore represent no 
additional modeling. If one wants to incorporate 
simulation at different resolutions then this requires 
additional modeling using a commercial tool. Our 
tool provides all levels of resolution using the basic 
set of models. One simply includes those models 
whose logic we want represented. 

7 CONCLUSIONS 

The distributed simulation and control system was 
successfully tested on our physical simulator of an 
FMS consisting of 4 single processor machines, 1 
double processor machine and an automated guided 
vehicle system. For the sake of demonstration the 
system used 6 independent computers to control the 
hardware. Real-time simulations of the distributed 
controller using our methodology were concurrently 
executed using the same control models. The 
simulations were initialized to the current state of 
the hardware before starting. This allows the 
simulations to produce future predictions. 

We have shown an implementation of a tool that 
along with a coordination object can simulate a 
distributed system using the individual models. The 
key issue for this implementation to work is our 
distributed modeling methodology where each 
individual simulation object is included into the 
simulation program and the coordination function 
coordinated the execution of each simulation object 
to model the concurrent processing. The 
coordination function uses its global event list to 
organize the execution of the simulation object by 

chronological order. The simulation objects in tern 
only execute the immediate event and do not cycle.  

One of the most important advantages of using 
the same models for both simulation and control is 
that the state definition is simply the data in the 
variables of the models. This allows for the 
simulation to be initialized with the current state of 
the controller with only a trivial copying of the data 
to a 2nd copy of the model. This solves a major 
problem in control. That is, the state does not need 
to be interpreted to meaningful information to 
initialize a different model.  
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