
FUNCTIONAL AND NON-FUNCTIONAL APPLICATION
SOFTWARE REQUIREMENTS

Early Conflict Detection

Paulo Sérgio Muniz Silva, Leonardo Chwif
Centro Universitário FIEO - Campus Narciso, R. Narciso Sturlini, 883 Osasco 06018-903 SP Brazil

Keywords: Application functional requirements, Application non-functional requirements, Requirements conflict
analysis

Abstract: Usually, standard practices of application software development are only focused on functional
requirements. However, IS managers know that when they have an experienced development team,
typically systems break not because they do not meet functional requirements, but because some system
attributes, also known as non-functional requirements, such as performance, reliability, etc., are not
satisfied. One of the root causes of this failure is that non-functional requirements do not receive an
adequate attention, are not well understood and are not appropriately modeled. Furthermore, non-functional
requirements may present critical conflicts among them. This paper proposes a pragmatic method to help
the early detection of conflicts between the functional and the non-functional requirements of application
software.

1 INTRODUCTION

Typically, when we analyze software application
requirements, we do that almost exclusively from
the functional viewpoint. Nevertheless, there is
another and very important class of software
requirements: non-functional requirements, or
quality attributes, used to express some of the
constraints acting upon software system behavior
(e.g., reliability, performance, accuracy, etc.).

IS managers know that when they have an
experienced software team and a rather controlled
process, typically systems break not because they do
not meet functional requirements, but because some
desired system non-functional requirements are not
satisfied. One of the root causes of this failure is that
these requirements usually do not receive an
appropriate tool support and are less well understood
than functional requirements (Mylopoulos,
1999)(Chung, 1995). To complicate matters, usually
non-functional requirements are contradictory or
have negative interference among them. For
example: let us suppose we have usability and
security as general non-functional requirements for
certain IS application. To meet the usability
requirement, one decides to share the available
stored information implemented as an access to all

databases. This decision clearly has a negative
influence on the security attribute.

Pinned to this complex scenario is the important
issue of the impact of functional requirements on the
non-functional ones. Typically, when system
analysts specify application functional requirements,
they do not analyze early in the project their impact
on non-functional requirements (obviously if the
latter are also specified). How can one relate the
functional requirements to the non-functional ones?
What are the negative impacts of the functional
requirements on the non-functional ones? This paper
proposes a pragmatic method to help the early
detection of conflicts between the functional and the
non-functional requirements, based on an
increasingly used software system functional
requirements model: the use case model (OMG,
2002). It is also based on a particular traceability
model using Rational Unified Process (IBM, 2002)
software requirements artifacts. Section 2 presents a
synthetic view of functional and non-functional
requirements and summarizes well-founded models
for representing and analyzing them. Section 3
proposes a method to the early detection of conflicts
between functional requirements and non-functional
ones. Section 4 shows a simple example to describe
and illustrate the method. Section 5 draws some
conclusions and presents the ongoing research.

343
Sérgio Muniz Silva P. and Chwif L. (2005).
FUNCTIONAL AND NON-FUNCTIONAL APPLICATION SOFTWARE REQUIREMENTS - Early Conflict Detection.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 343-348
DOI: 10.5220/0002546803430348
Copyright c© SciTePress

2 FUNCTIONAL AND NON-
FUNCTIONAL REQUIREMENTS

Application requirement is an overloaded notion,
crossing various levels of abstraction. A convenient
road map, which helps the understanding of what
requirements we are dealing with, is presented in
(Leffingwell, 2003). Application properties are
initially stated as a list of simple descriptions from
the stakeholders’ viewpoint. They are features, or
services, provided by the application that fulfils one
or more stakeholder’ needs. Features are general
requirements that must be refined into more specific
requirements to guide the construction of the
application: the software application requirements.
As an example of a feature we may have: “The
purchase system should provide purchase trend
information on product items”. As an example of
correspondent application requirements we may
have: “Configure purchase trend report on product
items” and “Compile purchase trend history of
product items based on the configuration parameters
of the purchase trend report on product items”. The
separation of requirements into needs, features and
application software, helps the requirements
management, providing a general model for
requirements traceability: from stakeholder’s needs
to application software requirements, via application
features.

On the other hand, application requirements can
be characterized as functional and non-functional
requirements. Functional requirements express the
expected system behavior, i.e. how the system
should react to particular inputs and how the system
should behave in particular situations. Non-
functional requirements are constraints on the
functional requirements, e.g., reliability,
performance, project costs, etc. Almost all practical
methods concerning requirements elicitation,
analysis, specification and validation deal with
functional requirements. Non-functional
requirements (NFRs) are far much lesser understood
than functional requirements (FRs), in part because
they are intertwined (NFRs are always related to
some FR), or because some NFRs exert negative
influences on others, leading to conflicts. NFRs
studies and characterizations originated in technical
works on software quality metrics, e.g. (Boehm,
1996). But despite their vital nature, the predominant
state of practice does not provide guidelines
allowing requirement analysts to reason about NFRs
and the relations between FRs and NFRs.

On the FR side, a renowned method amidst the
plethora of application software requirements
elicitation methods is the use case model (OMG,
2002). The fundamental elements of the use case

model are: actor, use case and association between
an actor and a use case. An actor is an external entity
– human or system – with a specific role that
interacts with the system under consideration. A use
case is the description of the functional use of the
system from the actor’s (actors’) viewpoint: the
system must deliver a result with a measurable value
to actors. An actor-use case association denotes the
interaction between an actor and a use case. There
are some well-established use case model
specification templates, e.g. (IBM, 2002), allowing
the refinement of functional application software
requirements expressed as sequence of interactions
between actors and use cases. Use cases have also a
visual model – the use case diagram -, which is very
convenient to show the whole picture. However, the
use case model is not appropriate to state application
features, it is a model of application requirements.
(IBM, 2002) has another artifact to record
application features: the Vision document. The
Vision document defines the scope of the application
from the product point of view and is produced as an
outcome of stakeholders’ negotiation. There are
specific sections to define stakeholders’ and users’
needs, and product features as well.

On the NFR side, the use case model is not
adequate to state NFRs, not only because it does not
model and organize NFRs, but also because it is
error prone if NFRs are applicable to multiple use
cases (Supakkul, 2004). The Supplementary
Specification (IBM, 2002) only records NFRs as
declarative textual sentences. On the other hand,
there is a very promising alternative approach that
tries to rationalize the development process in terms
of non-functional requirements, providing ways to
reason about the NFRs and their relationships: the
NFR Framework (Chung, 1995) (Chung, 2000). This
approach is far from being known as use cases are,
but provides a unified framework to specify NFRs as
“first-class citizens” in requirements context.

We will present the NFR framework by quoting
(Supakkul, 2004) extensively. The framework is
goal-oriented, where NFRs are represented as
“softgoals” that must be satisfied where there is
sufficient positive and little negative evidence for
the claim. In fact, softgoals are “satisficed”, a term
coined to refer solutions that are sufficiently good,
even if they may not be optimal (Chung, 1995). The
“satisficeability” is determined by considering
design alternatives or decisions, analysing design
tradeoffs, recording the design rationale and
choosing design decisions. This rationale is
modelled in a softgoal interdependency graph (SIG),
representing softgoal decompositions. The selected
design decisions are used to guide application
architecture and design. Figure 1 depicts a SIG
fragment of Confidentiality softgoal. The light cloud

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

344

denotes an NFR softgoal, with a label Type [Topic],
where Type is an NFR aspect (e.g. Confidentiality),
and Topic is the context for the softgoal (e.g.
Supplier). There are two forms of decomposition:
AND-decomposition (a single arc crossing
decomposition edges) and OR-decomposition (a
double arc crossing decomposition edges). Arrows,
carrying positive or negative contribution, represent
interdependencies between pairs of softgoals (not
depicted in the figure). A simplified version of the
framework expresses the degree of satisficeability
by a +/- indicator. The degree of the contribution to
the satisficeability is subjectively denoted as highly
positive (a ++ symbol), somewhat positive (a +
symbol), somewhat negative (a – symbol) or highly
negative (a – symbol). There is much more to be
said about the framework and its rich set of elements
and semantics, but in the present paper we will use
their minimum elementary elements.

3 CONFLICT DETECTION

In the early stages of application software
specification it is important to have a reasonable
knowledge about the impacts of FRs on NFRs. FRs
are often in conflict with NFRs and/or cause
undesirable scenarios that violate NFR requirements,
due to negative interdependencies between NFR
softgoals. We propose a pragmatic method that helps
the initial negative impact detection of FRs on
NFRs, focused on the interdependencies between
NFRs and based on an instance of the Rational
Unified Process (IBM, 2002) requirements
discipline guidelines. The method does not deal with
conflict resolution, and it is limited to conflict
detection in early stages of requirements analysis.

The method uses the Use Case Model as a model
for FRs and a simplified version of the NFR
Framework as a model for NFRs, focused on the
requirements viewpoint exclusively. The main
strategy of the NFR Framework relates design

decisions (also called as operationalizing softgoals)
with NFR softgoals, analyzing the impacts of the
former on the latter (Chung, 2000). This strategy
takes NFRs softgoals interdependencies into
consideration. Our strategy substitutes the role of
FRs for the role of design decisions, raising the level
of abstraction to the requirements viewpoint. The
strategy is based on the process of integrating NFRs
with FRs described in (Suppakul, 2004), but differs
from it in two important ways: it does not consider
design decisions and it brings NFRs
interdependencies into the front scene. The idea is to
analyze how FRs are related to NFR softgoals
having negative influences on other NFR softgoals.
This situation may characterize serious conflicts
derived from requirements (FRs and NFRs) solely.
Briefly, the method has two goals: to show the
relations between FRs and NFRs, and to show the
negative impacts of FRs on NFRs.

How to relate FRs to NFRs? (Supakkul, 2004)
presents the guidelines to relate a use case model to
NFRs. The integration is based on NFR association
points. In a use case model, the association points
are: Actor Association Point (external entity related
NFR, e.g. scalability: the system must handle
potentially large number of users); Use Case
Association Point (function related NFRs, e.g. fast
response time NFR to Withdraw Fund use case of an
ATM system); Actor-Use Case Association Point
(NFRs related to system access, e.g. security); and
System Boundary Association Point (NFRs that
affect the whole system).

Confidentiality
[Supplier]

[Supplier
identity]

[Supplier
proposals]

Confidentiality
[Supplier]

[Supplier
identity]

[Supplier
proposals]

Figure 1 - A SIG FragmentFigure 1: A SIG Fragment.
Our method uses the same steps of (Supakkul,

2004) to identify the use case model related NFRs
and produce the SIG for identified NFRs. We
introduce steps to show NFR interdependencies and
relate the use case model to the NFRs, instead of
considering design and implementation issues as
(Supakkul, 2004) does. How to relate use cases to
NFRs softgoals? We will the use a particular
traceability model based on (Leffingwell, 2003),
which describes a very pragmatic traceability model
presenting the following tracing dependencies within
the requirements definition scope and from the RUP
viewpoint: product features traces to stakeholders’
needs; use cases traces to product features; and
supplementary requirements traces to product
features. As mentioned in section 2, the Vision
document defines stakeholders’ needs and product
features, the Use Case Specifications define the use
cases, and the Supplementary Specification declares
the NFRs. The tracing dependencies are recorded
into traceability matrices. It is worth noting that
product features are the pivotal element that links
use cases (FRs) to NFRs. We describe the proposed
method along the presentation of an illustration
example.

FUNCTIONAL AND NON-FUNCTIONAL APPLICATION SOFTWARE REQUIREMENTS: Early Conflict Detection

345

4 AN ILLUSTRATION EXAMPLE

Due to space limitations, we will describe and
illustrate our proposed approach with a very simple
example based on a hypothetic version of a pricing
system developed for major airlines described in
(Supakkul, 2004). We extensively quote (Supakkul,
2004) for the system general description and
adequately modify the requirements model to meet
RUP guidelines.

The pricing system allows the airlines to
collaborate with its suppliers over the Internet to
manage prices charged by suppliers for in-flight
service items such as meals, drinks, supplies, and
cleaning activity. In the use case model, the actor
Service Item Planner represents authorized airlines
users to manage the service items specification.
When service items specifications are created,
deleted or updated, the system automatically sends
electronic Request for Proposal (RFP) over the
Internet to the suppliers. The suppliers receiving the
RFP send price proposals to the airports they serve.
The airlines’ Procurement Manager then approves or
rejects the proposal. Suppliers revise the rejected
proposals and re-submit until both sides agree on the
prices. We will extend this general description with
the following requirement: there is a categorization
of suppliers with respect to service items, based on
their proposals’ history (price, quality, etc.). The
remaining of this section succinctly presents the
steps of the proposed method.

Step 1. Collect the application feature list from
the Vision document. The Vision document written
for the first release of application software product
produced the following high priority feature list:

1. Create/delete/update service item.
2. Update bill of materials.
3. Fill in RFP.
4. Group items with respect to category of

suppliers.
5. Maintain suppliers’ proposals history
6. Automatic sending of RFPs via Internet.
7. Submit proposals via Internet
8. Compose proposals for easy comparison
9. Approve/reject proposal.
10. Install application in supplier’s facilities.
11. Multi-language support to international

suppliers.
12. User-friendly help on-line.
13. Technical support to clients.
14. Custom user input/output due to cultural

business issues.
15. Localized user input/output.

Step 2. Analyze the use case specifications and
produce the Use Case vs. Feature Traceability
Matrix.

The use case model, depicted in Figure 2, is
straightforward and based on (Supakkul, 2004).
Table 1 shows the traceability matrix, relating use
cases (rows) and features (columns). This is a
Boolean matrix (Kolman, 1996), where the ‘X’ mark
denotes the Boolean value “true”. The blank cells
denote the Boolean value “false”.

Table 1: Use Case vs. Feature Traceability Matrix.
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 X
2 X X X
3 X X X X X X X
4 X X X X X X X X
5 X X X X X X X X

Step 3. Elaborate the NFR model.
The Supplementary Specification defined the

following NFRs, similar to (Supakkul, 2004):
Usability, meaning User Friendliness especially for
international suppliers; Serviceability, meaning
minimum client side support; and Confidentiality,
meaning that suppliers should not see each other’s
proposals and approvals. Serviceability has global
scope, ranging over the entire system; User
Friendliness impacts on suppliers’ interactions with
the system; and Confidentiality affects suppliers’
RFPs and proposals handling.

The simple and not complete SIG graph, for
illustration purposes only, is depicted in Figure 3. It
is also based on (Supakkul, 2004), differing from it
with respect to some decomposition details and
because we do not consider operationalizations (a
design viewpoint) at this early stage of the lifecycle,
but NFR decompositions exclusively. Our SIG graph
also depicts interdependencies between some pairs
of NFRs sub-goals. We may arrive at the following
(incomplete) interdependency relationships:
• Localized Input/Output may have a somewhat

negative influence on Technical Support, if
users do not adequately handle it.

• Customized Input/Output has a strong negative
influence on Installation and Technical Support,
for obvious reasons.

• Easily Accessible Help has a somewhat positive
influence on Technical Support, due to Help
lack of clarity or incompleteness.

• Identification, from User Friendliness, has a
strong negative influence on Confidentiality of
suppliers’ proposals (e.g., a supplier may enter
another supplier identity and have access to its
proposals).

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

346

Step 4. Analyze the NFR Model and produce the
NFR vs. Feature Traceability Matrix.

After analyzing the NFR model, produce the
traceability matrix (also a Boolean matrix), depicted
in Table 2, that shows the relations between NFRs
(rows) and features (columns). NFRs are identified
as follows: S for Serviceability, C for
Confidentiality and U for User Friendliness. The
matrix also conveys the information about the
interdependency influences, having features as
pivotal elements as described in section 3 and values
of influences taken from the NFR model.

Table 2: NFR vs. Feature Traceability Matrix.
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N X
T X
P X X X X
D X
L X
C X
H X X

In the table, NFR N stands for Installation
softgoal, T for Technical Support softgoal, P for

Confidentiality of Supplier Proposals softgoal, D for
Confidentiality of Supplier Identity softgoal, L for
Localized Input/Output softgoal, C for Customized
Input/Output softgoal, and H for Easily Accessible
Help softgoal.

1. Update Bill of Material
BOM System

Service Item
Planner 2. Manage Service Item

5. Submit Proposal
«extend»

[posting RFP] Supplier

4. Approve Supplier Proposal
Procurement

Manager

3. Send RFP

1. Update Bill of Material
BOM System

Service Item
Planner 2. Manage Service Item

5. Submit Proposal
«extend»

[posting RFP] Supplier

4. Approve Supplier Proposal
Procurement

Manager

3. Send RFP
Step 5. Produce the Use Case vs. NFR

Traceability Matrix.
This matrix results from the Boolean product

(Kolman, 1996) of the matrices produced in steps 2
and 4. More formally, let A denote the Use Case vs.
Feature Traceability Matrix, let B denote the NFR
vs. Feature Traceability Matrix, and let C denote the
Use Case vs. NFR Traceability Matrix. We have:

Figure 2 - Use Case Diagram of the Example

 C = A ⎜ BT,
where ⎜ denotes the Boolean product, and BT

denotes the transpose of B. We need the latter in
order to interchange the rows and columns of B to
perform the Boolean product operation.

 N T P D L C H
1
2
3 X X X X X X
4 X X X X X X
5 X X X X X X

This matrix shows that the specifications of Send
RFP, Approve Supplier Proposal and Submit
Proposal use cases must take applicable NFR
requirements into consideration.

Step 6. Produce the NFR Negative

Interdependency Matrix.
This matrix denotes the negative

interdependencies between pairs of NFRs depicted
in the SIG from the NFR Model. As we are only
interested in a qualitative evaluation of the negative
impacts of use cases (FRs) on NFRs, we will not
record into this matrix the degrees of

Serviceability
[Pricing System]

Confidentiality
[Supplier]

[Supplier
identity]

[Supplier
proposals]

[Server components][Client components]

Installation Technical Support

Localized
Input/Output

[Language][Date/Time]

User Friendliness
[Supplier access]

Customized
Input/Output

Easily accessible
help

Identification

-- --
--

+

-

Serviceability
[Pricing System]

Confidentiality
[Supplier]

[Supplier
identity]

[Supplier
proposals]

[Server components][Client components]

Installation Technical Support

Localized
Input/Output

[Language][Date/Time]

User Friendliness
[Supplier access]

Customized
Input/Output

Easily accessible
help

Identification

-- --
--

+

-

Figure 3 - Softgoal Interdependency Graph of the Example

Figure 2: Use Case Diagram of the Example.

Figure 3: Softgoal Interdependency Graph of the Example.

FUNCTIONAL AND NON-FUNCTIONAL APPLICATION SOFTWARE REQUIREMENTS: Early Conflict Detection

347

‘satisficeability’, but simply a mark (e.g. ‘X’)
denoting the existence of a negative interdependency
between an NFR row element and an NFR column
element. As usual, we interpret the mark as the
Boolean value “true”, taking the produced matrix as
a Boolean matrix.

 N T P D L C H
N
T
P
D
L X
C X X X X
H

Step 7. Produce the Use Case vs. NFR Impact

Matrix.
This matrix results from the composition of the

Use Case vs. NFR Traceability Matrix and the NFR
Negative Interdependency Matrix, showing the
negative impacts of use cases on NFRs. More
formally, let E denote the Use Case vs. NFR Impact
Matrix, let D denote the NFR Negative
Interdependency Matrix, and let C denote the Use
Case vs. NFR Traceability Matrix as above. Both C
and D are Boolean matrices. In this case, the
composition of C and D, denoted by D Ε C, can be
computed by the Boolean product of C and D
(Kalman, 1996):

 E = D Ε C = C ⎜ D.
We record a mark (e.g. ‘X’) to denote a negative

impact of a use case on an NFR. Computing the
composition of the NFR Negative Interdependency
Matrix and the Use Case vs. NFR Traceability
Matrix, we have the following matrix:

 N T P D L C H
1
2
3 X X X X
4 X X X X
5 X X X X

This matrix shows that the specifications of use
cases Send RFP, Approve Supplier Proposal and
Submit Proposal must receive a special attention
during analysis, because they potentially conflict
Installation, Technical Support, Confidentiality of
Supplier Proposals, and Confidentiality of Supplier
Identity non-functional requirements.

5 CONCLUSION

This paper presented a method to help the early and
initial analysis of the relationships between

functional requirements and non-functional
requirements, and of the negative impacts, or
potential conflicts, between functional requirements
and non-functional requirements. The presented
method is grounded in the use case model (OMG,
2002), in a general traceability model using Rational
Unified Process artifacts (Leffingwell, 2003), and in
the not so well known NFR Framework (Chung,
2000), providing a pragmatic approach to handle this
admittedly difficult tasks. The method is limited to
the detection of potential conflicts in early stages of
requirements elicitation and analysis.

Currently we are working on the following
goals: (1) the refinement of the integration of non-
functional requirements with functional
requirements, to capture a more detailed view of
their relationships and to develop a consistent
traceability model; (2) the integration of the degrees
of ‘satisficeability’ between softgoals in our method;
(3) the analysis of commercial case tools that
propose requirements traceability and conflict
analysis with respect to the proposed approach.

REFERENCES

Boehm, B.W. and In H., 1996. Identifying quality-
requirements conflicts. IEEE Software, March, 1996.

Chung, L., Nixon, B.A. and Yu, E., 1995. Using non-
functional requirements to systematically support
change. In RE ’95, The Second IEEE International
Symposium on Requirements Engineering. IEEE
Computer Press, pp. 132-139.

Chung, L. et al., 2000. Non-functional requirements in
software engineering. Boston: Kluwer Academic
Publishers.

IBM, 2002. IBM Rational Unified Process 2002.
Kolman, B., Busby, R.C. and Ross, S., 1996. Discrete

mathematical structures – 3rd. Edition. New Jersey:
Prentice-Hall.

Leffingwell, D. and Widrig, D., 2003. Managing software
requirements: Second Edition. USA: Addison-Wesley.

Myloupolos, J., Chung, L. and Yu, E., 1999. From object-
oriented to goal-oriented requirements analysis.
Communications of the ACM, 42(1), pp.31 – 37.

OMG, 2002. OMG Unified Modeling Language
Specification: version 1.5. Object Management Group,
MA, USA.

Supakkul, S. and Chung, L. Integrating FRs and NFRs: a
use case and goal driven approach. In Proc. 2nd
International Conference on Software Engineering
Research, Management and Applications (SERA ’04),
May 5 – 7, 2004, Los Angeles, CA, pp. 30–37.

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

348

