
JOB SCHEDULING IN COMPUTATIONAL GRID USING 
GENETIC ALGORITHMS 

Mohsin Saleem, Savitri Bevinakoppa 
School of Computer Science and Information Technology, RMIT Univeristy, Mlebourne,Australia 

Keywords: Grid Computing, Scheduling, Genetic Algorithms 

Abstract: The computational Grid is a collection of heterogeneous computing resources connected via networks to 
provide computation for the high-performance execution of applications. To achieve this high-performance, 
an important factor is the scheduling of the applications/jobs on the compute resources. Scheduling of jobs 
is challenging because of the heterogeneity and dynamic behaviour of the Grid resources. Moreover the jobs 
to be scheduled also have varied computational requirements. In general the scheduling problem is NP-
complete. For such problems, Genetic Algorithms (GAs) are reckoned as useful tools to find high-quality 
solutions. In this paper, a customised form of GAs is used to find suboptimal schedules for the execution of 
independent jobs, with no inter-communications, in the computational Grid environment with the objective 
of minimising the makespan (total execution time of the jobs onto the resources). Further, while using the 
GA-based approach the solution is encoded in the form of chromosome, which not only represents the 
allocation of the jobs onto the resources but also specifies the order in which the jobs have to be executed. 
Simple genetic operators i.e., crossover and mutation are used. The selection is done on the using 
Tournament Selection and Elitism strategies. It was observed that the specification of order of the jobs to be 
executed on the Grid resources played a significant role in minimising the makespan. The results obtained 
from the experiments performed were also compared with other heuristics and the GA-based approach by 
other researchers for job-scheduling in the computational Grid environment. It was observed that the GA-
based approach used in this paper was able to achieve much better performance in terms of makespan. 

1 INTRODUCTION 

The objective of scheduling is to minimise the 
execution time of the jobs on the Grid resources and 
to balance the load across the resource as much as 
possible. The scheduling techniques depend heavily 
on the nature of the jobs to be scheduled. Jobs can 
be independent or dependent on each other. 
Independent jobs may require an input file and can 
execute in any sequence according to their resource 
requirements. In the case of dependent jobs, the 
results are communicated to other jobs as inputs and 
this communication pattern can be represented using 
task graphs.  The scheduling of both kind of jobs 
mentioned above, can be static or dynamic. In the 
case of static scheduling all the job requirements and 
the information about the resources in the Grid are 
already known before applying the scheduling 
technique. However in the case of dynamic 
scheduling, assumptions about the jobs and 
performance predictions about the Grid resources 
are used to take scheduling decisions at run time of 

the jobs. This paper addresses the static scheduling 
problem of the independent jobs in the Grid 
computing environment. 
  The scheduling problem is NP-complete 
(Hachbaum, 1997), so many heuristics have been 
suggested to find an optimal solution to this problem 
in the Grid computing environment (Casanova et al, 
2000). In this paper a simple form of GAs is applied 
to the scheduling problem in the Grid computing 
environment. Special chromosome representations 
are used to produce the schedules, which then help 
in minimising the makespan (total execution time of 
the jobs onto the resources) and assist in balancing 
the load on resources. 

2 PROPOSED SOLUTION 

This model contains an information keeper, which 
provides information about the jobs to be scheduled 
as well as the resources in the Grid. Jobs are 
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Figure 1: Proposed Model

specified by a number of requirements such as 
required computing power, total execution time, 
required architecture, required operating system, and 
size and location of data input file. The users of the 
Grid submit jobs to a resource broker. The resource 
broker uses the information from the information 
system and the jobs’ requirements as submitted by 
the users to generate a schedule.  

To create a schedule, the resource broker will ask 
the scheduler component to find an appropriate 
schedule based on the information of jobs and 
resources. The scheduler can use any algorithm to 
produce a schedule. The scheduler makes use of the 
makespan calculator component, which estimates 
the total run time of the schedule. The purpose of the 
scheduler is to produce a schedule with a minimum 
makespan. The makespan includes not only the 
execution time of the jobs but also the data transfer 
time for the input files.  

A customised implementation of Simple Genetic 
Algorithms (Holland, 1975) is used in this paper to 
create a schedule for independent jobs to run on the 
Grid resources with the objective of minimising the 
makepsan. A random method is used to create initial 
population of schedules and then applied standard 
genetic operators to produce new schedules. Two 
forms of chromosome representation are used and 
the results are compared. First form only considers 
the allocation of jobs on the resources. The second 
form considers the order of the jobs on each resource 
along with the allocation of jobs on the resource. 
Single-point, two-point, uniform and cycle 
crossovers are used for reproduction of individuals. 
The selection is based on tournament selection 
(Srinivas et al, 1994) technique. Elitism (Mitchell, 
1996) is also used to make sure that the best 
chromosome remains in the population. Scheduling 
with GAs has been proved a good tool for providing 

very good solutions to large scheduling problems. 
The use of a simple model reduces the complexity of 
the solution and makes it easier to integrate the 
solution into the other models. 

The application model chosen for this study was 
that of independent jobs with no communication 
between them. This means that the jobs have no 
precedence constraints and can be scheduled in any 
possible order. The performance criterion was to 
reduce the makespan of the schedule. The GAs 
provide a flexible framework for this kind of 
scheduling problems; in this work a customised form 
of GAs is used. The main focus of the paper is on 
the scheduling using GA, so few assumptions were 
made regarding the information about the jobs and 
the resources. The details of the solution architecture 
and the implementation of GA used for the 
scheduling are presented below. Every job in the job 
pool gets unique identification number Job ID, 
Resource ID in XML format.  

3 GA SCHEDULER 
ARCHITECTURE 

The model used to solve the scheduling problem is 
given in Figure 1. 
The model used consists of following basic 
components: 

3.1 Resource Broker 

The resource broker is responsible for getting 
requests for resources to allocate jobs on them. The 
resource broker, with the help of the information 
keeper component obtains the job requirements for 
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the resources. This component is not only 
responsible for allocation of jobs on the resources 
but also for monitoring their progress and returning 
the results to the user(s).  

Once the information has been updated in the 
information keeper component, the resource broker 
asks another component called scheduler to use this 
information and come up with a good schedule. The 
good schedule in this paper is the one that helps in 
finishing the job execution on the resources as early 
as possible and keeps a balance of the load on the 
resources at the same time. 

3.2 Information Keeper 

The information keeper is responsible for keeping 
the information about the resources and the jobs to 
be allocated on those resources. It contains two sub-
components called job information pool and 
resource information pool. 

The information keeper stores the information 
about the jobs in the job information pool. The 
resource information pool is updated when the 
resource broker has to allocate job to the feasible 
resources. This information can be obtained from 
services such as MDS-2 (Zhang et al, 2004) (a part 
of Globus toolkit (Foster et al, 1998)) or NWS 
(Lowekamp, 1999). 

3.3 Scheduler 

This component is instantiated by the resource 
broker once the information has been collected by 
the information keeper. The scheduler assumes that 
all the information in the job information pool and 
the resource information pool of the information 
keeper is the latest and builds a good schedule based 
on that information.  

In this paper, a Genetic algorithm based approach 
is used to find a good schedule. In GAs the new 
generation of solutions go through an evaluation 
process. The scheduler component evaluates the 
schedules produced using information from the 
information keeper. The best schedule made by the 
scheduler is returned to the resource broker.  

3.3.1 Unordered Schedule  

In one implementation of the scheduler, the schedule 
is produced without any specification of the order in 
which jobs have to be executed. The order is 
determined by the resource on which jobs have to 
run. Here we assume that when the scheduler does 
not specify the order the jobs run on the resource in 
a First Come First Served (FCFS) fashion.  

3.3.2 Ordered Schedule 

In the other implementation of the scheduler, the 
order of the jobs on the resources is also specified. 
By specifying order, makespan can be minimised. If 
jobs 1, 2 and 3 are allocated on a resource, allocating 
them in a different order affects the total execution 
time. It is assumed that the resources can run jobs in 
parallel. In the example shown in Figure 2, the 
computing power is shown on the horizontal side of 
the graph and time spent to execute the job is shown 
on the vertical side. In the first case, job 2 and 3 are 
allocated first in parallel. Job 1, which is a slightly 
larger job has to wait until job 3 finishes execution, 
thus increasing the makespan. In the other case if job 
1 is allocated first with job 2 running in parallel, job 
3 can start execution in parallel with job 1 when job 
2 is over. This reduces the makespan significantly as 
shown in Figure 2. 

Figure 2: Example to show how order affect the makespan
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3.3.3 Makespan Calculator 

A makespan calculator is used by the scheduler to 
calculate the makespan of a schedule produced. It 
virtually allocates the jobs on the resources as 
specified by the schedule and returns the makespan. 
To get information about the jobs and the resources 
the makespan calculator contacts the information 
keeper, whenever it needs it. The scheduler uses this 
makespan to determine how good or bad is the 
schedule produced. 

Figure 4: Chromosome with mapping and sequence strings 

4 GENETIC ALGORITHMS 
BASED APPROACH FOR 
SCHEDULING 

4.1 Chromosome Representation 

In this paper, two representations of chromosomes 
have been used, the first representation considers the 
assignment of jobs on the resources while the other 
considers the order of jobs on the resources as well. 
In the first representation, the chromosome consists 
of a string where the positions in the string represent 
the jobs to be scheduled and the value at each 
position represents the resource on which job has to 
be executed. This string is termed a mapping string 
as it gives mapping of jobs on the resources. In this 
case the order of jobs on the resources is not 
considered and is left to the resource to decide the 
order as shown in Figure 3.  

In the second representation, another string is 
used in addition to the mapping string to consider 
the order of jobs to be run on the resources. In this 
string the positions in the string represent the jobs 
and the values at each position in the string represent 
the sequence in which the jobs are submitted to the 
resources. This string is termed a sequence string as 
it gives the sequence of jobs submission on the 
resources as given in Figure 4.  

In this example, if we consider the allocations to 
the resource 4 we find that jobs 4, 5 and 9 are 
allocated to this resource. If we do not consider the 
sequence string, then the jobs 4, 5 and 9 will be 
executed on resource 4 in the order {4, 5, 9}. On the 
other hand, the sequence string enforces the order 
{9, 4, 5}. 

4.2 Initial Population Generation 

In the initial population step, a fixed number of 
chromosomes are generated. In GA used here, 
random methods are used to generate mapping 
strings and sequence strings. While creating the 
initial population of sequence strings, the values in 
the genes are kept unique at the chromosome level. 
To create the initial population of mapping strings of 
the chromosomes, the list of feasible resources is 
used, which every job-information unit contains. 
The information keeper generates this list for every 
job in the job information pool. In this step the 
values are assigned in the mapping strings randomly, 
from the list of feasible resources for each job. For 
example, if job 2 has resources 1, 2 and 4 in the list 
of feasible resources then while creating an initial 
population of mapping strings, any value can be 
assigned at position 2 out of 1, 2 and 4. 

To create the initial population of sequence 
strings, for each string the values are assigned based 
on the following two constraints: first, the values 
should be unique and second, the values should be 
less than the total number of jobs. A simple method 
is used to create these strings. For each string a list L 
is created containing number ranging from 1 to j, 
where j is the total number of jobs to be scheduled. 
A value k is picked up from L and put into the 
sequence string at its starting index. The value k is 
then removed from L. After that, each time k is 
picked randomly from L, put in the first available 
index in the sequence string and then removed from 
L. This process is repeated to generate every 
sequence string in the initial population. The reason 
for using random methods to generate an initial 
population is to introduce diversity into the 
population - the more diverse the initial population, 
the more chances there are to reach an optimal 
solution. 

4.3 Evaluation 

In the evaluation step the population under 
evaluation is checked for fitness. The smaller the 
makespan, more fit the chromosome is. To 
determine the fitness the GA makes use of the 
makespan calculator. In case the order is not Figure 3: Chromosome with mapping string. 
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important, the makespan calculator calculates 
makespan in a First-Come-First-Served (FCFS) way 
on the resources given by the mapping string. In the 
other case, the order of execution of jobs is given by 
a sequence string and the makespan calculator 
calculates makespan based on order given by the 
sequence string. The GA used here also determines 
the best chromosome and the average fitness of the 
generation under evaluation. 

4.4 Selection and Crossover 

In this step, the parents’ chromosomes are selected 
to take part in reproduction to produce offsprings. 
One option is to use the top half chromosomes 
sorted in the order of fitness, however this may lead 
to a local optimum and ignore the global optimum 
(Wilkinson, 1999). To avoid this situation, 
tournament selection (Wilkinson, 1999) is used. The 
GA, in this step, chooses pairs of chromosomes 
randomly from the population and selects the 
chromosome with better fitness as a parent of the 
next generation. Tournament selection provides a 
fairly good chance for individuals to take part in 
reproduction. The problem with this selection 
method is that it produces parents half in number 
than the number of individuals in the population. 
This problem is addressed later in the crossover step.  
Uniform Crossover is used for crossover for both 
mapping and sequence strings. 

Comparison of the results obtained with the optimal value of makespan
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5 EXPERIMENTS AND ANALYSIS 
OF RESULTS 

In the following sub-sections, the results obtained 
from all the test cases used are given. These results 
are obtained using following parameters: 
Number of individual in a population = 1000 
Total number of generations = 500 
Uniform Crossover for mapping strings 
Cycle Crossover for sequence strings. 
Mutation operators 
Crossover Probability = 0.95 
Mutation Probability = 0.5 
Tournament Selection with Elitism 
Both representations of chromosomes 
The termination condition is the completion of 500 
iterations 
These parameters were chosen after running a series 
of experiments using the test cases given below and 
found out to be best for this solution of the 
scheduling problem. In the case of crossover for 
mapping strings, the single-point and the two-point 
crossovers produced almost similar results. In the 

following sections the test cases and the analysis of 
the results are given. 

5.1 Test 32-4 

This experiment had 32 jobs with different 
computational requirements to be scheduled on 4 
resources. In this experiment, the first 24 jobs can 
run on all the 4 resources, but the other 8 jobs can 
run only on resource 3 and 4. 

Figure 5 shows the makespans achieved by the 
scheduler when it is run 20 times. The scheduler was 
able to get the makespan of 180 on 4 occasions 
when the ordering of jobs was specified. It can be 
inferred that scheduler resulted in a degradation of 
6% from the optimal solution on 20% of occasions 
when ordering is used. The most frequently 
occurring makepsan in this case was 190 - occurring 
12 times in 20 attempts of the scheduler. It can be 
concluded that the scheduler was able to find a 
solution which has a degradation of 12% from the 
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Figure 5: Comparison of results obtained with the 
optimal makespan 
timal solution on 60% of occasions. In short, in 
% of attempts, the makespan degradation was in 
 range of approximately 6% to 12% when 
ering is specified. In the case of ordering, not 
ng specified, the makespan degradation was in 
 range of 12% to 18% in all attempts. 
the case of random scheduling the jobs are 

igned randomly on the feasible resources. The 
kespan given in the graph is obtained by running 
 random scheduling 20 times and considering the 
st frequently recurring makespan. In the case of 
t node first, the makespan is obtained by 
cating a job on a resource which can guarantee 

 minimum completion time for that job. This 
edy approach for scheduling is also described in 
wok et al, 1999) as Minimum Completion Time 
CT) heuristic. The makespans achieved by the 
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scheduler using GA based approach with and 
without ordering information, are compared with the 
heuristics defined above. 
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Figure 6 shows that the approach used in this 
paper outperformed other heuristics stated earlier in 
the performance. Random scheduling performed the 
worst in all the test cases. The best node first 
heuristic performed better than random scheduling 
in all experiments. In the case of Test 9-1, best node 
first had the same performance as the GA and was 
able to achieve the optimal makespan. In all other 
test cases, this heuristic was not able to compete 
with GAs and was far removed from the optimal 
makespan. The GA with ordering information 
achieved better performance than the GA with no 
ordering information. The GA with ordering 
information was able to produce a schedule with a 
makespan closer to the optimal makespan. 

Figure 7: Standard Deviation of the different algorithms. 

Figure 7 shows the comparison of standard 
deviations observed with different algorithms. It was 
observed that in Test 9-1 all the algorithms 
performed the same as far as the stability of 
algorithm was concerned. In all other cases the 
random heuristic was found to be the most 
inconsistent. The Best Node First heuristic was the 
most consistent as it always came up with the same 
solution. Both the GA approaches were almost 
identical in consistency, but the approach with no 
ordering information performed slightly better i.e., 
less standard deviation. But this fact does not make 
this approach better than that with ordering 
information. To elaborate more on the performance 
of the algorithms, another comparison is made. 

It is evident from the graph that the GA with 
ordering information has the best performance as 
compared to the other heuristics. In all the test cases 
this approach was observed to come up with a 
schedule having a makespan which had an average 
deviation of 12% to 16% from the optimal. In the 
case of the GA with no ordering information, the 
average deviation range was observed to be 16% to 
24%. In the case of random scheduling the average 
deviation range was found to be 40% to 50%. The 

average deviation range of the best node first 
scheduling heuristic was observed approximately 
18% to 46%. In short, the GA based scheduling 
using ordering information had the best average 
performance. 

6 CONCLUSION 

In this paper, the application model used had 
independent jobs with no inter-communication.  The 
performance criterion chosen was to reduce the 
makespan. In the experiments, the GA was run with 
and without the sequence strings in the 
chromosomes. It was found that if the GA is used, 
not only to determine the job allocations on the 
resources but also for the order in which jobs will 
run, the performance of the schedule becomes better. 
The approach used in this paper was also compared 
with the one used in (Martino et al, 2002) and 
(Martino, 2003).  It was observed that the approach 
used in this paper performs better that of Martino et 
al in terms of performance and execution time of the 
GA. The results of experiments wer also compared 
with the other heuristics such as random allocation 
and best node first. The GA based approach had 
significantly more execution time but it 
outperformed these heuristics in achieving sub 
optimal makespans.  
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Figure 6: Comparison of performance of GA 
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