
SEMANTIC DATABASE ENGINE DESIGN

Naphtali Rishe, Armando Barreto, Maxim Chekmasov,
Dmitry Vasilevsky, Scott Graham, Sonal Sood

Florida International University, High Performance Database Research center, Miami, FL

Ouri Wolfson
University of Illinois at Chicago, Chicago, IL,

Keywords: Semantic binary data model, database management system.

Abstract: New types of data processing applications are no longer satisfied with the capabilities offered by the
relational data model. One example of this phenomenon is the growing use of the Internet as a source of
data. The data on the Internet is inherently non-relational. As a result, demand developed for database
management systems natively built on advanced data models. The semantic binary data model (Rishe,
1992), satisfies the criteria for the models required for today’s applications by providing the ability to build
rich schemas with arbitrarily flexible relationships between objects. In this paper, we discuss a new design
for a semantic database management system which is based on the semantic binary data model. Our
challenge was to design and implement a database engine which, while being native to the model, is
reasonably efficient on a wide variety of industrial applications, and which surpasses relational systems in
performance and flexibility on those applications that require non-relational modelling. Special attention is
given to multi-platform support by the semantic database engine.

1 INTRODUCTION

The Semantic Binary Database Engine is a multi-
threaded, multi-platform computer program. Multi-
threading allows it to utilize the full CPU power of
multi-processor computers. Typically, two different
approaches are used for multi-threaded program
implementation. One approach is to use one thread
per CPU, a queue of work items, and non-blocking
operating system calls. Another approach is to use
one thread per request with blocking operating
system calls. While the first approach allows higher
performance, the second approach is easier to
implement and requires less effort to port to
different platforms.
Multi-platform support allows the engine to be
easily portable and to run on different platforms,
such as Microsoft Windows, Sun Solaris, HP-UX,
and Linux. It makes it possible for a client on one
platform to communicate with a server running on a
different platform. A detailed discussion of multi-
platform support is provided in section 5.
The Semantic Binary Database Engine consists of
two major parts – the Database Engine Kernel and

the User-Level Engine Environment as shown in
Figure 1. The interface between these two parts is
the Kernel API, which provides access to the
Kernel’s functionality.

Figure 1: Semantic Binary Database Engine.

The name 'Kernel' does not imply that it runs as a
part of the operating system kernel. The Database
Kernel consists of tightly coupled modules that
provide essential functionality and high performance
execution. The User-Level Engine Environment is a
set of loosely-coupled modules (add-ons) that have
access to the Kernel API and that provide user

433
Rishe N., Barreto A., Chekmasov M., Vasilevsky D., Graham S., Sood S. and Wolfson O. (2005).
SEMANTIC DATABASE ENGINE DESIGN.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 433-436
DOI: 10.5220/0002535604330436
Copyright c© SciTePress

programs with the service interfaces. The set of add-
on modules may vary depending on the DBMS
packaging. Examples of add-on modules are a
remote access module and database monitoring
tools.

2 DATABASE ENGINE KERNEL
API

The Database Engine Kernel API is an interface
between the Database Kernel and the User-Level
Engine Environment. It has the following properties.
The Kernel API is a set of functions intended to
provide the functionality of the semantic database
and to hide the implementation details. While the
internal implementation of the Database Kernel and
modules in the User-Level Environment can be done
in an object-oriented fashion, it is preferable to keep
the API as a flat set of functions for easier and more
efficient inter-process communication.
The interface is accessible, but is not intended to be
used by the user application programs. The interface
was designed to support efficient execution rather
than ease of use. Add-on modules in the User-level
Engine Environment provide easy to use interfaces
for user programs. This separation provides better
reliability and stability than an alternative design
with all the software modules fitted into the database
kernel since the system can more easily survive
faults in modules of the database engine that are
running outside the Kernel. It also makes the Kernel
code smaller, less prone to errors, and easier to
debug and maintain. It is important for the database
Kernel not to crash even if some ill-behaved
programs misuse the Kernel API.
Since the Database Engine Kernel is a separate
process, the Kernel API is an interface between
processes running on the same computer. The
functionality of remote access is not provided at this
level, but is instead provided by the Remote Access
Server, which is one of the add-ons in the User-
Level Engine Environment. The Remote Access
Server can be added or removed from the system
depending on the expected functionality of the
system. For example, it may not be needed for
embedded applications.
The Kernel API handles data in terms of facts that
are not yet encoded for any storage structure. This
allows users of the interface to see the database in its
semantic representation. At the same time, the
storage subsystems in the kernel may employ any
kind of encoding and data structures to physically
store the data.

3 USER-LEVEL ENGINE
ENVIRONMENT

The User-Level Engine Environment is a set of
modules running as one or several processes on the
same computer where the Kernel runs. All these
modules (except the first three below) are
independent and can be designed and implemented
separately. It is important to separate them from the
Kernel modules to ensure stability and reliability of
the database engine.
The Local Semantic API module provides a
conventional semantic API for database
applications. This ensures compatibility with old
programs that use previous versions of the semantic
binary database engine. The semantic API was
designed with the assumption that the engine and the
user program would run in the same address space
(it uses pointers to internal memory structures).
While this is faster than remote access, it is not
secure since the database engine is not protected
from the ill-behaved user programs. This is the
reason for the current design to employ a Kernel API
to protect internals of the database and to run a
Local Semantic API module in the User-level
Engine Environment.
The complex query language for semantic databases,
called AVDV, is described in (Vaschillo, 2000). The
Complex Query Executor analyzes an AVDV query
graph, builds the execution plan, then performs
queries and obtains results according to the
execution plan. Several other components in the
User-Level Engine Environment, such as Web
Query Tool and Semantic SQL Server require
execution of complex queries and rely on this add-
on module.
The Semantic SQL Server module allows users to
query databases by means of semantic SQL (Rishe,
1999) and standard database protocols such as
ODBC. Semantic SQL Server accepts a SQL
statement and parses it. Parsing semantic SQL
statements involves discovering the relevant sub-tree
of the semantic schema given an unambiguous path
postfix as described in (Rishe et.al., 2000). The
corresponding query AVDV graph can then be
constructed. When the AVDV query graph is
constructed, it is passed to the Complex Query
Executor module for optimization and execution.
The result of execution is returned to the user.
The Export/Import module provides export and
import of a database into interchangeable standard
formats. Some of the common formats are Comma
Separated Values (CSV) and Extensible Markup
Language (XML). The module also provides export
to the proprietary native Semantic Definition

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

434

Language (SDL) and to the XML-based Semantic
Definition Language (XSDL).

4 DATABASE ENGINE KERNEL

The Database Engine Kernel is the main component
of the Database Engine. The Kernel consists of
several modules that are tightly integrated to provide
maximum efficiency; all the modules run in one
address space. The modules have well defined
interfaces to communicate with each other, and the
internal details of each module’s implementation can
be designed independently. Figure 2 shows the basic
data flow between the modules.

Figure 2: Database Engine Kernel.

The Integrity Constraint Module is used to verify the
integrity constraints. The system reports updates to
the Integrity Constraint module. For some updates,
the system makes an immediate decision that the
operation should be rejected. Information about
other updates is stored and a decision is deferred
until commit time. For example, a decision on a
cardinality constraint can be verified right away,
while a decision on a totality constraint should be
deferred until transaction commit time.
The Transaction Coordinator carries out the
transaction lifecycle. The system supports two types
of transactions – transactions with versioning and
without versioning. The typical execution of a
transaction with versioning is shown in Figure 3.
The Concurrency Control module manages
transactions and ensures the consistent state of the
database. All requests for updates and queries in the
system are communicated to the module in the form
of lock requests and releases. The Concurrency
Control module stores enough information to decide
whether to grant or to delay certain lock request. The
module also verifies all the locks at the end of a
transaction and decides whether the transaction is
allowed to commit. Concurrency Control supports
several types of transactions and makes the final

commit/rollback decision according to the
transaction type.

Figure 3: Transaction lifecycle.

All transaction updates are communicated to the
Transaction Log module. This module provides
storage of the local transaction log on a per-
transaction basis. The transaction log can be
retrieved later on to be run against the database. This
module also maintains the global database
transaction log and appends the local transaction log
to the global database transaction log at transaction
commit time.
Storage Codecs perform encoding and decoding
between storage representation and semantic
representation. Fact, Record and Bitmap
representation can be used in appropriate situations.
When the components of the storage item are sent to
the module, it composes the storage item that will be
placed in the storage subsystem. When the storage
item is retrieved from the storage subsystem, the
module decodes it to semantic components. For
example, the fact representation codec takes two
object IDs and a relation ID and combines them into
a binary string when the information is to be stored.
On retrieval it takes the binary string and parses it
into two Object IDs and the relation ID.
The Storage Subsystem is the module which
stores/retrieves information to/from files composed
of fixed-size blocks. The information is already
encoded for storage by the Storage Codec module. A
B-Tree structure is the main storage subsystem used
in fact and record representation.
The Multi-version Disk Cache improves
performance of the disk subsystem by keeping the
content of disk blocks in memory and saving disk
I/O operations. If a block that is already in the cache
is requested, it is not retrieved from the disk and the
cached copy is used instead. If subsequent
modifications are made to the same block, the cache
keeps the block in memory and saves time on disk
write operations by waiting until the last

SEMANTIC DATABASE ENGINE DESIGN

435

modification is made. In addition to these standard
write-back cache functions, the Multi-version Disk
Cache provides functionality specific to the database
engine. It allows the storage subsystems to lock
blocks in memory. Whenever a block is needed by
the storage subsystem for certain operations, such as
binary search within the block, the storage
subsystem does not create its own copy of the block.
Instead, it requests the disk cache to lock this block
in memory for the duration of operation and uses the
same copy of the block. Sharing of the block copy is
possible since the modules in the Kernel, including
the disk cache, run in the same address space. This
type of sharing eliminates the necessity of block
copy operations. It is important that the lock is held
for only a short period of time, since all the locked
blocks have to be present in memory. If locks are
held for a long time, the system may run out of
memory.
The disk cache provides support for block
versioning. A block ID in the cache is two-
dimensional: it is composed of a sequential block
number in the database file and a sequential database
version (B, V). The transaction coordinator increases
the database version with every read-write
transaction and assigns the version to the
transaction. Whenever the transaction requests block
B for modification, the block ID is composed of B
and the database version V assigned to the
transaction. If the block does not already exist, a
new copy of the block is created. The new copy is
based on the block with the same block number B
and the database version that was current at the
beginning of the transaction. The old block is
retained until a transaction in the system requests it.
The Binary Server module hides the file structure of
the database and provides the user with flexible
storage options. The module is used to store data of
the database engine’s files with fixed size blocks to
the disk. The Binary Server implements a simple file
system that can provide this functionality by using
one disk file or several disk files or even raw disks
not formatted by the operating system. The Binary
Server can also distribute the database across
multiple computers. All storage subsystems share
the same space of disk blocks provided by the
Binary Server. Whenever a block is freed from a
storage structure, it goes into the common pool of
free blocks. This allows for better management of
space allocated to the database.

5 CONCLUSION

Semantic databases have many advantages over
relational databases that will allow them to grow in

popularity as the complexity of data increases.
However, the semantic database engine should be
implemented in a way that is not prohibitively
expensive on operations typical to relational
databases. We have shown that a number of
reasonable tradeoffs are possible in the design of the
semantic database engine that can make it
competitive on applications that are widely-used
today.
This work shows how a framework that allows
investigation of advantages and disadvantages of
different approaches in each of the database engine
modules can be built. A number of conclusions have
been made on the feasibility of particular choices
based on theoretical considerations, as well as
practical experience implementing various parts of
this design in several combinations.
Innovative technologies missing in the previous
semantic database theory and prototype
implementations have been designed and discussed.
These technologies are expected to overcome some
of the shortcomings that have kept semantic
databases from being widely accepted in the field.

ACKNOWLEDGEMENTS

This material is based on work supported by the
National Science Foundation under Grants No.
HRD-0317692, EIA-0320956, EIA-0220562, CNS-
0426125, IIS-0326284, CCF-0330342, IIS-0086144,
and IIS-0209190.

REFERENCES

Rishe, N., 1992. Database Design: the semantic modeling
approach, McGraw-Hill. 528 pp.

Rishe, N., 1994. Semantic Schema Design Language,
available at request, http://hpdrc.cs.fiu.edu .

Vaschillo, A. 2000. A Semantic Paradigm for Intelligent
Data Access. Ph.D. Dissertation, Florida International
University, 143 pp.

Rishe, N., 1999. Semantic SQL, available on request at
http://hpdrc.cs.fiu.edu .

Rishe, N., et.al. 2000. SemanticAccess: Semantic Interface
for Querying Databases. In Proceeding of the VLDB
Conference, pp. 591-594, September 10-14, 2000,
Cairo, Egypt.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

436

