
A TREE BASED ALGEBRA FRAMEWORK FOR XML DATA
SYSTEMS

Ali El bekai, Nick Rossiter
School of Informatics, Northumbria University

Keywords: XML documents, tree algebra, integration framework

Abstract: This paper introduces a framework in algebra for processing XML data. We develop a simple algebra,
called TA (Tree Algebra), for processing storing and manipulating XML data, modelled as trees. We
present assumptions of the framework, describe the input and the output of the algebraic operators, and
define the syntax of these operators and their semantics in terms of algorithms. Furthermore we define the
relational operators and their semantics in terms of algorithms. Examples show that this framework is
flexible to capture queries expressed in the domain specific XML query language. As can be seen the input
and output of our algebra is a tree that is the input and output are XML document and the XML documents
are defined as trees. We also present algorithms for many of the algebra operators; these algorithms show
how the algebra operators such as join, union, complement, project, select, expose and vertex work on nodes
of the XML tree or element and attributes of an XML document. Detailed examples are given.

1 INTRODUCTION

In this paper we develop an algebraic model for data
management, which unifies in a single framework
data presentation, data communications and data
processing based on an XML Schema (Zisman
2000). Starting with the XML Schema of the data
we develop domain specific XML algebra suitable
for data processing of the specific data. The
algebraic model we are developing, based on the
existing standard (W3C XML Query Algebra), is a
domain specific model of collaborative information
processing over the Web. Even though it is domain
specific, however, it will be generic since it will
model an integrated architecture for distributed
information processing. The input and output of our
algebra are XML documents defined as a tree. We
also present examples and algorithms for most
algebra operator; these examples and algorithms
show how the relational algebra and its operators
work. Furthermore we apply join, union,
complement, project, select, expose and vertex
operations to nodes to form the XML tree as
elements and attributes of XML (Bourret 2004).
 The rest of the paper is structured as follows:
Section 2 presents the related work for XML
algebra. This leads up to our algebra description in
Section 3. Section 4 presents our XML data model.
Section 5 presents the algebra relational. The

examples for algorithms and input and output of the
algebra operators are defined in Section 6. Section 7
presents a discussion of the algebra.

2 RELATED WORK

Table 1 provides a summary and review of algebraic
methods discussed in this paper. It can be seen
that all have some significant drawbacks, in
particular in complexity and generality. In the next
section we attempt to address these problems by
developing a tree-based algebra, which is more
versatile in its application. The algebraic models we
have reviewed are IBM (Beech, M. & Rys 1999),
Lore (McHugh et al 1997), YATL (Christophides,
Cluet & Simeon 2000), Niagara algebra (Galanis et
al 2001) and AT&T a (W3C February 2001).

305
El bekai A. and Rossiter N. (2005).
A TREE BASED ALGEBRA FRAMEWORK FOR XML DATA SYSTEMS.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 305-312
DOI: 10.5220/0002528403050312
Copyright c© SciTePress

Table 1: Comparison of Different Algebraic Models

Algebraic
Model

IBM YATL

Niagara

Lore

AT&T

Data
Model

Standalone XML
algebra

Logical Data Model,
Graph Based

Standalone XML
algebra

Integrated DBMS

Standalone XML
algebra

Approach Represents the
collection of
vertices

Integrates data from
different sources

Operates on a set of
bags of vertices

Cost-based query
optimization

Based on the
iteration operation,
NRA

Distinctive

Features

- Not system
specific,
XQuery support.

- Provides an
algebra operator
that operates as
graph-based data
model.

- Ability to integrate
data from different
sources; can be used
efficiently in querying
distributed data.

- YTAL has Tree
operations for
transforming relation
structure to Tree
structure (Codd 1972)

- Simple and powerful
algebraic expressions,
optimised rules

- Optimised from
cost-based
perspective, dynamic
schema structure.
- Each query is
transformed into a
logical query plan
using logical
operators such as
Select, Project,
Discover…etc

- Built in types for
detecting errors at
query compile
time.

- SQL& OQL and
NRA support
XQuery.

- Based on the
iteration operation

Drawbacks - Deficiency of
Optimisation
Rules,
- Complex query
structure, data type
should be known
at query compile
time

- The integration is
exclusively based on
YATL data model and
type system, and does
not provide a well-
defined list of the
operators and explicit
optimisations.

- The algebraic
framework assumes that
at the time of writing
the query, the type is
known for each vertex
(attribute, element)
[Fenkhauser, S. 2001]
- Implementing a query
using IBM model will
lead to a complex
structure.

- The physical
operators are
designed specifically
for its own data
model

- Query plan based
on this algebra,
once generated, is
difficult to
optimize

Special
Operators

Reshaping
Operators Bind, Tree operators - Vindex, Lindex, once -

W3C Proposed - Proposed - Proposed

3 DESCRIPTION OF OUR
ALGEBRA

Our XML Algebra is a tree structure that consists of
algebra operators (Greenwald et al 2003). Each node
in the tree has only one parent node, but a parent
node can have multiple children nodes. The XML
Tree is interpreted top-down, so the root of the tree
at the top of the XML Tree is where the final XML
document output is produced. The leaves of the tree
correspond to the different data sources accessed,
which in our system prototype are assumed to be
object-relational (Galanis et. al 2001, Scholl 1986).
There are two types of operators in our algebra:
firstly, the algebraic operators are join, union,
complement, project, select, expose and vertex.
 Every operator has a unique output of a tree,
which makes it distinct from other algebra operators.
Secondly, the relational operators are universal,
subsuming, equivalence and similarity.
In the following sections we well explain in more
detail all algebra operators and algebra relational.
The algebra operators are based on W3C (standard
algebra) and comprise XML-specific and special
operations.

4 OUR XML DATA MODEL

Figure 1 shows an XML tree, in which there is a
topmost, unique element, collection, known as the
root of the XML document (ancestor) (Comon et al
1997). All elements are enclosed within Х&topmost
element, collection. Object1 and object3 sub-
elements reside within the root node. This nesting of
sub-elements can go to an arbitrary level. Figure 1
shows the tree data model.
Elements and attributes correspond to nodes in the
XML tree. Directed, named edges connect nodes,
with the tag of the corresponding element or
attribute name acting as the name of an edge. For
each node of the tree, except the root node, there is a
backward edge leading to the parent node. Note that
a parent node appears only between those connected
with child nodes or leaf nodes. A path consists of the
sequence of node names that one needs to follow in
order to arrive at a node from the root node.

4.1 Concepts in the tree model

Root (ancestor or parent): the top node of the tree is
identified as the root node.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

306

a d : (a n c e s t o r - d e s c e n d e n t)

p c : (p a r e n t - c h i l d)

c o l l e c t i o n

o b je c t 1

o b j e c t 3

o b j id

o b je c t I n f o r 2

d e s _ d a t e

0 1 6

F _ f o r m a t

r e f e r e n c e in f o

D o c :

o b je c t I n f o r 1o b jN u m b e r

1 0 0 1 2 3 4
I n f o _ id

1 0 1 2 . 1 0 . 9 8

I n f o _ id

d e s _ d a t e

2 0 1 2 . 1 2 . 9 8

o b je c t I n f o r 4

d e s _ d a t e

o b je c t I n f o r 3o b jN u m b e r

3 2 3 9 I n f o _ id

0 3 1 2 . 1 0 . 9 9

I n f o _ id

d e s _ d a t e

0 9 1 2 . 1 2 . 9 9

o b j id

3 0 1
im a g e in f o r

I m g _ id r e f _ id t i t l e t y p e

p d f r 3 5 c o l l e t o r b ib l i o g r a p h i c

a d

p c

p c

p c

p c

p c
p c

p c

p c

p c

E l e m e n t E d g e

P a r e n t E d g e

– Node (parent or child): an edge is a link from a
parent node to a successor node, called child
node.

Figure 1: Tree data model

– Leaf (child): child nodes, atomic values
– Path: a path from node V1 to Vn sequence of

nodes, where 1<=n<=20
– Descendants: represent all nodes that are

children of current node or children of children
of current node and so on.

– Ancestor of nodes V are parent, grandparent, etc,
that is all nodes found on the path from node V
to the root node. The ancestor represents all
nodes that are parent of current node or parent of
parent of current node and so on.

4.2 XML Document as Tree Structure

– XML document → Tree
– Element → Root node, parent, child node
– Leaf → child node, atomic values
– Attribute → function, values.

5 ALGEBRA RELATIONAL

 In this section we introduce four types of relational
algebra operators: Universal, Similarity,
Equivalence and Subsumption. In the following
sections we will explain these relations in more
details.

5.1 Universal Element Relation

This relation is unary (∪) and contains all
information. In a case study for a museum objects

information system the universal element would
include the collections, their objects, object
information and exhibition and institutions as
described in (ICOM 1995, CIDOC 2002) and
presented by Ali Elbekai in his thesis.

5.2 Similarity Relation

Similarity relation (∼) means that the major
structures of the two trees are similar, for example
the Doc4 tree is similar to the Doc3 tree, as in Figure
2. Also, the similarity relation is a binary relation. In
general we can see the relation between any two
XML tree is similarity if the following holds: the
root node in Docn tree and the root node in Docm
tree are similar, the parent node in Docn tree and the
parent node in Docm tree are similar and the child
nodes in the Docn tree and the child node in Docm
tree are similar. In addition if we find that any parent
node or child node in Docn tree or Docm tree is an
unnamed node then this node matches the
corresponding named node at the same level and
position as are depicted in Figure 2.

5.3 Equivalence Relation

Equivalence relation (≈) means that two trees are
indistinguishable as in Figure 3 where the nodes in
the Doc3 tree are equivalent to those in the Doc4
tree then we can identify that the Doc3 tree is
equivalent to the Doc4 tree. The equivalence relation
is a binary relation. In general we can explore that
the relation is equivalence between any two XML
trees if the following holds: the root node Docn tree
and the root node Docm tree are equivalent, the

A TREE BASED ALGEBRA FRAMEWORK FOR XML DATA SYSTEMS
c o l le c t io n 4
D o c 4

o b je c t In fo r2

1 0
1 2 .1 0 .9 8

c o l le c t io n 3

2 0

1 2 .1 2 .9 8In fo _ id
d e s c _ d a te

D o c 3

o b je c t3

o b je c t I n fo r1

In fo _ id d e s c _ d a te

~
o b je c t In fo r2

1 0 1 2 .1 0 .9 8
2 0 1 2 .1 2 .9 8

In fo _ id
d e s c _ d a te

o b je c t3

o b je c t I n fo r1

In fo _ id
d e s c _ d a te

o b je c t1

Figure 2: Similarity relational operator
307

parent node Doc
are equivalent a
child nodes Doc

5.4 Subsum

Subsumption (⊂
the other, for ex
the Doc1 tree in
present in Doc3
present in Doc1
a subsumption o
conclude that th
of Docm tree if
Docn tree exists
tree exists in the
tree exists in the
tree is part of Do

6 ALGEBR

All operators in
input and produ
Korth & Silbersc

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

308
c o l le c t i o n 3
D o c 3

o b je c t I n f o r 2

1 0
1 2 . 1 0 . 9 8

c o l l e c t i o n 4

2 0

1 2 . 1 2 . 9 8I n f o _ i d

d e s c _ d a t e

D o c 4

o b je c t 3

o b je c t I n f o r 1

I n f o _ i d d e s c _ d a t e

~
o b j e c t I n f o r 2

1 0 1 2 . 1 0 . 9 8
2 0 1 2 . 1 2 . 9 8

I n f o _ i d
d e s c _ d a t e

o b je c t 3

o b j e c t I n f o r 1

I n f o _ i d
d e s c _ d a t e

o b je c t 1

~

 Figure 3: An Equivalence relational operator
n tree with parent node Docm tree
nd the chid nodes Docn tree and
m tree are equivalent. In addition if

the parent node or child node in both Doc trees is
unnamed, then the unnamed node matches the
corresponding node in the same level and position.

ption Relation

) means that one tree is a subset of
ample the Doc3 tree is a subset of
 a binary relationship. If the nodes
 tree are a subset of the nodes

tree then we can see the Doc3 tree is
f the Doc1 tree. In general we can

e Docn tree is subsumption or equal
the following holds: the root node
in Docm tree, the parent node Docn
 Docm tree and the child node Docn
 Docm tree. In other words the Docn
cm tree.

A OPERATORS

tree algebra take one tree or more as
ce one tree of data as output (Roth,
hatz 1988).

6.1 Join Operator

A join (⊕) is a binary operator, which takes two
trees as input, and combines them into one tree as
output. This combination is made whenever a certain
expression holds true, that is the two tree collections
are joined on a predicate. The predicate can be as
generic as the conditions accepted by the selection
operator. The query operation selects documents that
meet the stated criteria from a collection of
documents. It may also extract components from
selected documents and construct new documents
from these components. Also the join operator has
the property of being commutative. More precisely
Doc1 tree ⊕ Doc2 tree = Doc2 tree ⊕ Doc1 tree.
Furthermore, it is associative which means (Doc1
tree ⊕ Doc2 tree) ⊕ Doc3 tree =Doc1 tree ⊕ (Doc2
tree ⊕ Doc3 tree). Figure 5 shows how to join any
two trees in general. The syntax of the join operator
is DOCn Tree ⋈ [condition] DOCm Tree
where(1<=n<=10) and (1<= m< = 10).

o b je c t 3

o b je c t I n f o r 2o b je c t I n f o r 1

1 0 1 2 . 1 0 . 9 8

I n f o _ i d d e s c _ d a t e

c o l le c t io n 3

2 0 1 2 . 1 2 . 9 8

I n f o _ id
d e s c _ d a t e

D o c 3
c o l le c t i o n 1

o b j e c t 1 o b j e c t 3

o b j e c t I n f o r 2

d e s c _ d a t e

1 6

f o r m a t

r e f e r e n c e in f o

D o c 1

o b je c t I n f o r 1

I n f o _ id

1 0 1 2 . 1 0 . 9 8

I n f o _ i d
d e s c _ d a t e

2 0 1 2 . 1 2 . 9 8

o b j e c t I n f o r 4

d e s c _ d a t e

o b je c t I n f o r 3

I n f o _ i d

0 3 1 2 . 1 0 . 9 9
i m a g e in f o r

I m g _ i d r e f _ id t y p e

p d f r 3 5 B ib l io g r a p h ic

o b je c t 1

Figure 4: Subsumption relational operator

// Input two XML document or two DOC tree (DOCn, DOCm)
// Output DOCnm Tree = (DOCn Tree ⊕ DOCm Tree)

1. start from root node DOCn tree and root node DOCm tree
2. if root node has parent\child node

2.1 perform depth-first algorithm
2.2 if the parent node DOCn tree has child node and parent node DOCm tree has child node

2.2.1 While child node DOCn tree agrees with child node DOCm tree repeat:
 2.2.1.1 join such child node (concatenation without repetition)
 2.2.1.2 set the output in DOCnm tree
 2.2.1.3 if child node in DOCn tree has leaf node agree with leaf node DOCm tree

 2.2.1.3.1 join such leaf node (concatenation without repetition)
 2.2.1.3.2 set joined leaf node to the output DOCnm tree

 2.2.1.4 join such leaf node in DOCn tree to leaf node DOCm tree
 2.3 set parent node to DOCnm tree

3. set no parent/child node and root node into DOCnm tree and terminate
4. end/terminate

Figure 5: An algorithm for Joining of two XML documents or two Doc trees

// Input two XML document or two DOC tree (DOCn Tree, DOCm Tree)
// Output DOCnm Tree = (DOCn Tree ∪ DOCm Tree)

1. start with root node DOCn Tree and root node DOCm Tree
2. set root node DOCn Tree or root node DOCm Tree in new DOCnm Tree
3. if root node has parent/child node in either DOC Tree

3.1 perform depth-first algorithm
3.2 if the parent node DOCn Tree = parent node DOCm Tree
 3.2.1 set parent node DOCn Tree or DOCm Tree in new DOCnm Tree
 3.2.2 while parent node DOCn Tree has child node or parent node
 DOCm Tree has child node

3.2.2.1 set child node to new DOCnm Tree
3.2.2.2 eliminate duplicate child node

 3.2.3 repeat
 3.3 set null to new DOCnm and terminate

4. set null and terminate

Figure 6: An algorithm for Union two XML documents or two Doc Trees

6.2 Union Operator

The purpose of the Union operator (∪) is to union
two XML trees. It is a binary operator with two
XML trees as input and one XML tree as output.
This is depicted in Figure 6. Furthermore, the union
operator is commutative. More precisely, DOC1 tree
∪ DOC2 tree = DOC2 tree ∪ DOC1 tree. Also it is
an associative operator, meaning
that (DOC1 tree ∪ DOC2 tree) ∪ DOC3 tree =
DOC1 tree ∪ (DOC2 tree ∪ DOC3 tree).
Furthermore the output of the union operators is new
XML tree data containing all the elements, root
node, parent nodes and child nodes in the two input
Doc trees data model without the duplication of any
elements such as root nodes, parent nodes and child
nodes. In general the syntax of the union is DOCn
Tree ∪ DOCm Tree, with limits (1<=n<=10) and
(1<=m<=10). The union is disjoint: duplicates are
purged.

6.3 Complement Operator

The complement operator (⊥), as a binary operator,
operates on two XML trees as input, and produces
one XML document or one XML tree as an output.
In other words the XML document is a tree; the
result of the complement of the two DOC trees is a
new DOC tree containing all the nodes present in the
first input DOC tree but not in the second DOC tree.
That is the output of the complement operator is a
new XML tree containing all element nodes (root
node, parent nodes, children nodes, function, values)
existing in the input DOCn tree data model and not
existing in the DOCm tree. Figure 7 show how we
can complement the two DOC trees or two XML
document in general.

A TREE BASED ALGEBRA FRAMEWORK FOR XML DATA SYSTEMS

309

 // Input two XML document or two DOC tree (DOCn Tree, DOCm Tree)

// Output DOCnm Tree = (DOCn Tree - DOCm Tree)
1. start from root node DOCn
2. If root node DOCn Tree and root node DOCm Tree has parent/child node

2.1 Perform depth-first algorithm
 2.2 if DOCn Tree has parent node not existing in DOCm Tree

 2.2.1 set parent node DOCn Tree to the new DOCnm Tree
 2.2.2 while parent node DOCn Tree has child node not existing in DOCm Tree

 2.2.2.1 set child node DOCn Tree to DOCnm Tree
 2.2.2.2 if child node DOCn Tree has leaf node not existing in DOCm Tree

 2.2.2.2.1 set leaf node DOCn Tree to DOCnm Tree
 2.2.2.3 set null to DOCnm Tree
 2.2.3 repeat

 2.3 set null to DOCnm Tree
3. set root node to DOCnm Tree and terminate
4. end/terminate

Figure 7: An algorithm for Complement two XML documents or two Doc Trees

// Input one DOC tree and the Output one DOC tree
1. start from the root node of DOC Tree
2. if root node has parent/child node

2.1 Perform depth-first algorithm
2.2 if projected node/selected node is equal to current node
 2.2.1 set the projected node as output to new DOC Tree
2.3 node projected/selected not exist and terminate

3 end/terminate

Figure 8: An algorithm for Projection operator

The purpose of the complement operator is to
compute the difference between the two input trees:
DOCn Tree - DOCm Tree with limits (1<=n<=10)
and (1<=m<=10). The complement operator is not
commutative, which means DOC1 tree – DOC3 tree
≠ DOC3 tree – DOC1 tree. Also it is not an
associative operator.

6.4 Projection Operator

The input for the projection operator (π) is one XML
tree, as it is unary. In general Figure 8 shows how
the projection operator works on nodes of the DOC
tree or elements of the XML document.

As can be seen from Figure 9 we take object3 as a
parameter and the searching is performed on the root

node collection1 in Doc1 tree. The output of the
projection operator is a new XML document or new
DOC1p tree. For trees, projection may be regarded
as eliminating nodes other than those specified. In
the substructure resulting from node elimination, we
would expect the (partial)

hierarchical relationship between surviving nodes
that existed in the input collection to be preserved.
Projection in tree algebra takes one collection <C>
(tree) as input and <P> as parameters. Projection
starts the search at the root node and follows the
path parent node successor, the child node, until it
finds the node projected. The syntax of the
projection operator is defined as follows: π<P><C>
where <p> is parameter and <C> is tree.

c o l l e c t i o n 1

o b je c t 1 o b je c t 3

o b je c t I n f o r 2

d e s c _ d a t e

1 6

f o r m a t
r e f e r e n c e in f o

D o c 1

o b je c t I n f o r 1

1 0 1 2 . 1 0 . 9 8

I n f o _ id
d e s c _ d a t e

2 0 1 2 . 1 2 . 9 8

o b je c t I n f o r 4

d e s c _ d a t e

o b je c t I n f o r 3

I n f o _ id
0 3 1 2 . 1 0 . 9 9

im a g e in f o r

I m g _ id r e f _ i d t y p e

p d f r 3 5 B ib l i o g r a p h i c

1 6

f o r m a t
r e f e r e n c e i n f o

o b je c t I n f o r 4

d e s c _ d a t e

o b je c t I n f o r 3

I n f o _ id

0 3 1 2 . 1 0 . 9 9

im a g e in f o r

I m g _ id
r e f _ i d

t y p e

p d f r 3 5
B i b l i o g r a p h i c

o b je c t 3
D o c 1 p

I n f o _ i d

Figure 9: An example for Projection operator

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

310

// Input one DOC tree or one XML document
// Output one DOC tree or one XML document
1. start with entry point, it is the root node
2. perform depth-first algorithm

2.1 if parameter is equal the specific node needed to expose
2.1.1 return the specific node
2.1.2 set specific node in the new tree

2.2 exposed element not exist and terminate
 3. end/terminate

Figure 10: An algorithm for exposing specific node of Doc tree

6.5 Select Operator

The purpose of a select (σ) operation is to filter out
tuples in the XML algebra satisfying an expression
given as a predicate. The select operator is a unary
operator to take one XML document or one tree as
input and produce one XML document or one tree as
output. The selection operator allows us to
determine a subset over a collection of documents. It
applies a given condition to each member of the
collection of nodes and returns a result node or
collection of nodes consisting of those members for
which the condition evaluates true. Selection in tree
algebra takes tree as input, and a <P> as parameter,
and returns an output tree <C>. Formally, the syntax
of select is defined as follows: σ <P> <C>. The
result of selection is a tree. We can take the
parameter and start our selection by depth-first from
the root node of the XML tree and successor, the
parent nodes and successor child nodes until the
selection condition is satisfied.

6.6 Expose/Vertex Operators

The Expose operator (ε) has one XML document or
one Doc tree as input, as it is a unary operator and
produces one Doc tree as the output. The purpose of
the Expose operator is to retrieve specific elements
of the XML document or specific nodes of the Doc
tree. The Expose operator accepts as its parameters
a list of path expression to be exposed from the
document on which it operates, with the path
expression in entry-point notation. Figure 10 shows
how we can expose specific nodes of the Doc tree in
general.
The Expose operator accepts as its parameter the
element (parent, child) exposed from the tree data
model on which it operates, with the path in entry
point notation, and follows the path root node,
parent node and successor child nodes until the
element required to be exposed is found. The output
of an Expose operator imposes a new ordering, the
same as the order of its arguments. Once the nodes
denoted by the path are reached, a
new element content is constructed. In general the

new syntax of the expose operation is:
Expose[edge1<element>](element: expression)
The Vertex operator (ν) has one XML document or
Doc tree as input, as it is a unary operator, and
creates the actual XML vertex that will encompass
everything created by the Expose operator. It
arranges the element content according to the order
indicated by its input. It creates the XML to which
nodes can be connected, as well as the named edges
that lead to the newly defined tree.

7 DISCUSSION

The results from our literature review gave us a
choice of an existing solution for applications in our
context of either (1) Lore algebra, adopting an
existing standard for building an original solution,
(2) the standard XML algebra of W3C, or (3)
developing a more targeted solution, that is a domain
specific algebra, to handle our requirements. All the
considerations, given earlier in the review, have
already been taken into account by the team working
on the standard XML algebra (W3C February 2001)
and XQuery (W3C 2004). In fact, the standard
algebra is largely based on the AT&T model with
some additional features and revisions in the spirit of
Niagara. So, the standard is a satisfactory starting
point for us in our efforts to develop domain specific
algebra and was therefore adopted as the basis for
our way forward. However, it does not make sense
to implement the full algebra defined by the standard
for one single specific task or even for a class of
similar tasks. Because of this we have developed a
formal data model as a restricted version of the
universal algebra suitable for a representative class
of problems. Of course, such an approach may lead
to a non-universal model, but at the same time, it is
feasible and does produce a more effective solution
for particular classes of problems. On this basis, we
started with the XML Schema (W3C September
2001) of the data to develop domain specific XML
algebra more suitable for data processing of the
specific data and then we used it for implementing
the main offline components of the system. There
are two types of operators in our algebra: firstly, the
algebraic operators are join, union, complement,

A TREE BASED ALGEBRA FRAMEWORK FOR XML DATA SYSTEMS

311

project, select, expose and vertex. Every operator
outputs a tree, which makes it distinct from other
algebra operators. Secondly, the relational operators
are universal, subsuming, equivalence, and
similarity. This means our work is based on the tree
based algebra framework for XML data systems.
Also, our algebra has a sound data structure and a
simple representation of the data. A contribution of
this work is that it introduces an algebra that
operates on a new data model, because our algebra
employs XML trees as data sources and targets. Our
algebra framework can be used in integrated
architectures for distributed information processing
and its components will be XML schema driven.
Furthermore, as a test framework for our integrated
approach we will prototype a system for the
exchange of information between several
independent museums for organising virtual
exhibitions over the Web. Also, we plan to extend
the algebra to support some of the more advanced
features of the XML query language.

REFERENCES

Beech, D, Malhotra A, & Rys, M, (eds.) A formal data
model and algebra for XML, Comm W3C (1999).

Bourret, Ronald. XML and Database (2004) at:
http://www.rpbourret.com/xml/XMLAndDatabases.ht
m

Christophides, V, Cluet, S & Simeon, J, On wrapping,
query languages and efficient XML integration, ACM
SIGMOD Conf Management Data, Dallas 141-152,
May (2000).

CIDOC Group (July 2002)
http://www.willpowerinfo.myby.co.uk/cidoc/cidoc0.ht
m

Codd, E F, Relational Completeness of Data Base, Data
Base Systems, Prentice Hall 6 65-98. (1972).

Comon, H, Dauchet, M, Gilleron, R, Jacquemand, F,
Lugiez, D, Tison, S, & Tommasi, S, Tree Automata
Techniques and Applications, at:
http://www.grappa.lille3.fr/tata. (1997)

Fenkhauser, M, Simeon, J, & Woder, P, An algebra for
XML Query, In Proc. FST TCS, New Delhi,
December (2000).

Fernandez, M, Simeon, J, & Wadler, P, A semi-monad for
semi-structured data, Int Conf Database Theory 263-
300 (2001).

Galanis, L, Viglas, E, DeWitt, D J, Naughton, J F, &
Maier, D, Following the paths of XML Data: An
Algebraic Framework for XML Query Evaluation,
Tech Rep Univ Wisconsin (2001).

Greenwald, M B, Moore, J T, Pierce, B C, Schmitt, A:
Language for Bi-Directional Tree Transformations.

Tech Rep MS-CIS-03-08, Dept Comp Inf Sci, Univ
Pennsylvania. (Aug 2003).

ICOM, International Guidelines for Museum Object
Information (IGMO): CIDOC Information Categories
(October (1995) http://www.cidoc.icom.org/guide

McHugh, J, Abiteboul, S, Goldman, R, Quass, D, &
Widom, J, Lore: A Database Management System for
Semi-structured Data. SIGMOD 3(26) 54-66 (1997).

McHugh, J, & Widom, J, Query optimization for Semi-
structured data, Tech Rep, Stanford Univ Database
Group, August (1998).

 http://www-db.standford.edu/pub/papers/qo.ps.
Roth, M A, Korth, H F, & Silberschatz, A, Extended

algebra and calculus for nested relational databases,
ACM TODS 13 389-417 (1988).

Scholl, M H, Theoretical foundations of algebraic
optimization utilization unnormalized relation, in:
ICDT’86, LNCS 234 409-420. (1986).

W3C, the XML Query Algebra, Working Draft,
http://www.w3.org/TR/2001/WD-query-algebra-
20010215. February (2001).

W3C, XML Schema: Formal Description, Working Draft,
September (2001).

W3C, XQuery 1.0: An XML Query Language, Working
Draft (23 July 2004)
http://www.w3.org/TR/2004/WD-xquery-20040723/

Zhang, X. and Rundensteiner, E A, XML Algebra for the
Rainbow System, Tech Rep WPI-CS-TR-02-24.
Worcester Polytechnic Inst, July (2002).

Zisman, A, An Overview of XML, Comp Control Eng J
11(4) (2000).

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

312

http://icom.museum/
http://icom.museum/

