
ASPECT-ORIENTED DOMAIN SPECIFIC LANGUAGES FOR
ADVANCED TRANSACTION MANAGEMENT

Johan Fabry
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussel, Belgium

Thomas Cleenewerck
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussel, Belgium

Keywords: Transaction Support, Software Engineering, Aspect-Oriented Programming, Domain-Specific Languages.

Abstract: Transaction management has some known drawbacks, which have been researched in the past, and many
solutions in the form of advanced transaction models have been proposed. However, these models are too
difficult to be used by the application programmer because of their complexity and their lack of separation of
concerns. In this paper we address this by letting the application programmer specify advanced transactions
at a much higher abstraction level. To achieve this, we use the software engineering techniques of Aspect
Oriented Programming and Domain-Specific Languages. This allows the programmer to declare advanced
transactions separately in a concise specification which is much more straightforward.

1 INTRODUCTION

In current-day module-based software development,
software is built by decomposing the problem domain
into different modules. However, given any decom-
position of a sufficiently large problem domain, not
all of its concerns can be modeled in separate mod-
ules. Some concerns will be scattered throughout
the entire system, crosscutting different modules (Tarr
et al., 1999). Transaction management is one of those
concerns because to use transactions, the program-
mer must add transaction demarcation code: code
which starts and ends transactions, and which indi-
cates which data accesses occur within the scope of
what transaction. Code for transaction demarcation is
therefore not just contained in one module. Instead,
transaction demarcation code is spread out into dif-
ferent modules.

Aspect-Oriented Programming (AOP) addresses
the issue of such cross-cutting concerns (Kiczales
et al., 1997) by introducing the concept ofaspects.
In AOP a concern is either implemented in a compo-
nent, or in an aspect. A concern is called a component
if it can be encapsulated cleanly into a module, and if
it cannot be encapsulated cleanly into a module, it is
called an aspect. (All concerns which are components
are often called the base aspect or base code.) AOP
allows the programmer not only to reason separately
about the aspects, but also to specify them separate

from the normal modules. This is achieved by speci-
fying the code pertaining to an aspect in a separate as-
pect file, in a special aspect language. Once all mod-
ules and aspects are defined, a special tool, called an
aspect weaver, combines these into executable code.

Proposed approaches that captured transaction
management with aspects all elaborated in an object-
oriented setting and start by assuming that transac-
tion boundaries coincide with method boundaries, i.e.
that transactions are started when a method starts ex-
ecuting and ended when the method ends. However,
these approaches are limited, as they structurally re-
strict themselves to only implement classical transac-
tion processing.

A known issue with classical transactions is that
it has been developed to treat small units of work,
which only access a few data items. As a result, as
transaction time grows, and the number of data items
accessed in one transaction becomes larger, the per-
formance of the system will drop significantly (Gray
and Reuter, 1993). To increase application perfor-
mance, and to address some additional requirements,
advanced transaction mechanisms (ATMS) have been
developed, mostly between 1981 and 1997. An im-
pressive number of alternate ATMS can be found in
the literature, and two books have been published
about the subject (Elmagarmid, 1992; Jajodia and
Kershberg, 1997).

Our research focuses on bringing the known ad-

428
Fabry J. and Cleenewerck T. (2005).
ASPECT-ORIENTED DOMAIN SPECIFIC LANGUAGES FOR ADVANCED TRANSACTION MANAGEMENT.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 428-432
DOI: 10.5220/0002526404280432
Copyright c© SciTePress



vantages of separation of concerns through AOP to
the field of ATMS. The goal is to be able to express
the transactional properties of the application in a
separate aspect, in domain-specific aspect languages.
Such a separate specification then allows us to tailor
the aspect-specific languages specially to the domain
of the problem at hand, in this case the ATMS being
used. As a result, the application programmer writes
more concise and intentional aspect declarations, i.e.
transactional specifications.

In this paper we start with an introduction to
ATMS, then briefly discuss a published formal model
for them. We then detail our contribution by first pre-
senting the general aspect language we defined for
ATMS: KALA, and second giving an overview of the
different aspect languages for specific ATMS.

2 ADVANCED TRANSACTION
MODELS

As said above, a large number of alternate ATMS can
be found in the literature, therefore we do not provide
a full overview here. Instead we briefly describe two
models here: Nested Transactions and Sagas.

A first example is the best-known ATMS:nested
transactions (Moss, 1981). Nested transactions al-
low for hierarchically structured transactions, where
a child transaction also has access to the data used by
its parent transaction, and this recursively to the root
transaction. Furthermore, when a child transaction
commits its data, this is not committed to the data-
base, but instead to its parent, which is now responsi-
ble for committing this data.

A second example ATMS,Sagas (Garcia-Molina
and Salem, 1987), is tailored towards long-lived trans-
actions. Sagas split these into a sequence of atomic
sub-transactions, which should either be executed
completely or not at all. Splitting the long-term trans-
actions releases locks earlier, which increases con-
currency. However, to rollback the Saga extra work
needs to be done: compensating actions must be
executed to undo the effects of already committed
sub-transactions. Hence, the application programmer
should define a compensating transaction for each
sub-transaction, which performs a semantical com-
pensation action. To rollback a Saga, the TP Monitor
aborts the currently running sub-transaction, and sub-
sequently runs all required compensating transactions
in reverse order.

Besides the models we discussed above, we have
evaluated a large set of ATMS, and have concluded
that each ATMS usually focuses on a small subset
of the issues of classical transaction management.
No overall system has been developed which treats a
large number of the identified shortcomings of classi-

cal transactions. However, a formal model that covers
many ATMS has been developed, that can serve as the
basis for an overall system, and we discuss this next.

3 FORMALIZING ATMS WITH
ACTA

The ACTA formalism (Elmagarmid, 1992) was cre-
ated as a common framework in which it is possi-
ble to specify different ATMS. We will now give an
overview of ACTA, and use nested transactions as a
running example of an advanced model.

In ACTA, an ATMS is formally defined by stating
three kinds of axioms that constrain and modify the
transaction history. This transaction history, as de-
fined in ACTA, consists of a sequence of operations
of the different transactions on the database.

The first kind of axiom on transaction histories are
dependencies: a dependency places a relationship be-
tween two transactions, defined in terms of the opera-
tions of these transactions. An example dependency is
the commit dependency (Tj CD Ti): if transactions
Ti andTj commit, Ti must commit beforeTj. In
nested transactions, ifTp is a parent transaction and
Tc a child transaction, then(Tp CD Tc).

The second kind of axioms defined by ACTA are
view definitions, which allow different transactions to
concurrently work on the same data as if they were
the same transaction. In the example this is specified
by defining the view ofTc to containTp.

The third kind of axioms aredelegation: one trans-
actionTi delegates the responsibility for committing
or aborting a specified number of its operations to an-
other transactionTj. In nested transactions, if a child
transactionTc commits, its effects are delegated to its
parentTp.

A wide variety of ATMS have been formally de-
scribed in ACTA, have been published. These de-
scriptions are quite complicated and lengthy: for ex-
ample, nested transactions is defined using nineteen
axioms, which are not that straightforward, as can be
seen in (Elmagarmid, 1992).

4 FROM ACTA TO ASPECT: THE
LANGUAGE KALA

Having the ACTA formal model at our disposal is an
important asset: we can use this model as a guideline
for the implementation of a TP Monitor and for the
definition of the aspect language for advanced trans-
action models. This will then allow us to support a
wide variety of advanced transaction models. As a
full discussion of the TP Monitor is outside of the

ASPECT-ORIENTED DOMAIN SPECIFIC LANGUAGES FOR ADVANCED TRANSACTION MANAGEMENT

429



scope of this paper, we will instead focus here on the
aspect language for advanced transaction models.

Our aspect language, called KALA (KernelAspect
Language forATMS), which, together with the cor-
responding aspect weaver, allows for the specification
of transactional properties of Java methods. These
specifications are highly similar, but not identical
to the ACTA specifications of transaction models.
In KALA, a programmer declaratively annotates the
transactional properties of a method, primarily using
the concepts which are defined in ACTA: dependen-
cies, view, and delegation. Additionally, two extra
concepts are required in KALA: naming of transac-
tions and life-cycle management. We discuss these
before treating dependencies, view and delegation.

4.1 Naming

To be able to refer to transactions within a KALA
program, two naming schemes are required: first a
static scheme for compile-time naming and second a
dynamic scheme for run-time naming.

In the static scheme, a transaction coincides with
a method definition, and is therefore named by giv-
ing the full class name and the method signature,
separated by a dot. This already allows us to write
our first KALA program, below, in which we declare
the method with signatureincrement(int) of the
classutility.Counter transactional.

utility.Counter.increment(int) {}

Within one transaction specification, the program-
mer needs to be able to refer to other transactions that
will run concurrently to be able to define dependen-
cies, views and delegation relations between them (as
defined in 3). To allow this, we also provide a dy-
namic naming scheme, at runtime. When a trans-
actional method starts, it can register itself globally
under a certain name, and all running transactional
methods can use this name to refer to it. This is
achieved in KALA by adding aname statement to
the transactional properties, which binds a transac-
tion identifier to a key (a Java expression enclosed
between angular brackets). Lookup is performed, by
using analias statement. In such a statement, an
expression referring to a dynamic name is resolved to
an already running transactional method.

A reserved name is the pseudo-nameself, which
always refers to the current transaction.

As an example of naming, suppose our counter
object has a unique identifier (contained in the in-
stance variableident) and we wish to register the
increment transactional method using this name and
the current count (contained in the instance variable
count). This is performed by the following KALA
program:

utility.Counter.increment(int) {

name (self <this.ident.toString() + this.count>);}

4.2 Transaction Life-Cycle
Management

Transactions are started and ended by the underlying
application as it executes. However, ACTA, as a for-
mal model, does not involve itself with this. ACTA
restricts itself to verifying if the resulting transaction
history complies to the axioms. In going from formal
model to an implementation, we have to consider how
we can ensure that transactions are started and ended
when necessary.

As transactions coincide with methods, the main
part of the responsibility for transaction life-cycle
management lies in the control flow of the underly-
ing application: at some points a transactional method
will be called, resulting in the beginning of a transac-
tion, and when the method ends, the transaction will
also end. However, in addition to the transactions
started by the application, some models, requiresec-
ondary transactions to automatically run when their
dependencies are satisfied. In Sagas, for example,
these are compensating transactions which run at roll-
back, i.e. these methods are executed at that time.

To support this, we have added the option to start
secondary transactions automatically through the use
of the autostart statement. Combining such an
autostart with the required dependency statements,
which we will see below, will ensure that the au-
tomatic transactions run when required. With the
autostart statement a transactional method will
be called which will run in a new thread, with a set of
given transactional properties.

A second life-cycle operation is the termination of
transactions. This is required because due to the com-
plex interactions of different transactions in ATMS,
when a transaction ends its name and dependencies
may still be required. When these are no longer
needed, the transaction can be stopped and removed
from the system by means of theterminate state-
ment.

4.3 Dependencies, Views and
Delegation

Dependencies, views and delegation are concepts of
ACTA which are represented as statements in KALA.
These statements can be performed at begin, commit
or abort time and therefore are grouped inbegin,
commit or abort blocks, as can be seen in the ex-
ample describing a nested transaction below:

AClass.nestedMethod() {

alias(parent < [...] > )

begin { dep(self wd parent, parent cd self);

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

430



view(self, parent) }

commit { del(self, parent) } }

In this example, we first use thealias statement
to lookup the parent transaction and bind it to the vari-
ableparent. We have omitted the expression that
determines the parents’ name, for brevity.

In the begin block, thedep statement declares
a dependency between two transactions, in this case
the WD and CD dependencies between parent and
child. Also in thebegin block, theview statement
declares that the child views the operations of the par-
ent. Lastly, in thecommit block, thedel statement,
performs delegation from child to parent transaction.

5 A FAMILY OF
DOMAIN-SPECIFIC
LANGUAGES

KALA is a powerful language consisting of a set of
assembly-like language constructs, based on the min-
imal set of basic building blocks of the ACTA formal
model. The programs in KALA describing ATMS
specify the inner-workings of these ATMS, as we
have seen in 4.3. Clearly this level of complexity is
not suitable for the application engineer as he should
in fact only reason in terms of the abstractions offered
by an ATMS.

To raise this level of abstraction to the level of con-
cepts present in the ATMS, we have built a number of
Domain Specific Languages, each language specific
to an ATMS, while obtaining a high degree of reuse
between the different language implementations. We
will now discuss these languages, before detailing
their implementation.

5.1 Domain-specific languages

Domain-specific languages are little languages which
are specifically designed to express applications in
a particular domain. This entails that the language
constructs of a DSL directly reflect the concepts of
the domain and hide the DSL programmer from non-
domain-specific technical issues.As a result, using a
DSL shields the application engineer from the techni-
cal details involving the inner-workings of the ATMS
he is currently using.

For each ATM we constructed a specific DSL that
reflects the abstractions used in that model. We have
currently implemented four DSLs, respectively for
classical transactions, nested transactions, Sagas and
RCS (which is an ATMS we did not discuss here).
Below an example is given of a specification in the
nested transaction language:

AClass.nestedMethod() extends < [...] >;

In this example, the transaction corresponding
to the methodAClass.nestedMethod() is de-
clared to be a child of another transaction, by using
theextends keyword. (As in 4.3 we have omitted
the Java code that determines the parents’ name)

At compile-time a DSL takes a domain-specific
program, such as the one above, and generates the
equivalent KALA program. In the above case, the re-
sult is the KALA program in section 4.3.

A more complicated example is the DSL which was
constructed to describe Sagas. An example of such a
Saga specification is given below. It is a money trans-
fer method which is divided into three steps, each a
method which is called by the transfer method. In
this code we declare the Saga and its steps. Also,
each step, except for the last, defines a compensation
step. Compensation steps are defined through the use
of thecomp keyword, which takes as argument a sta-
tic name, as defined in 4.1, and a list of actual para-
meters for that method.
Bank.moneyTransfer(Account, Account, int) {

Bank.transfer(Account, Account, int)

compensate Bank.transfer(Account, Account, int)

<dest, source, amount>;

Bank.printReceipt(Account, Account, int)

compensate Bank.printRet(Account, Account, int)

<source, dest, amount>;

Bank.logTransfer(Account, Account, int); }

As an illustration of the advantage of using a DSL,
we include the KALA program for the second method
only. We can not include the full KALA program due
to lack of space. Suffice it to say that the full program
is over four times the size of the code shown here, and
has the same complexity.
Bank.printReceipt(Account, Account, int) {

alias (Saga <Thread.currentThread()>);

alias (CompPrev <""+Saga+"Comp1">);

name (self <""+Saga+"Step2>);

autostart (Bank.printRet(Account, Account, int)

<source, dest, amount> {

name(self <""+Saga+"Comp2">); });

begin { alias (Comp <""+Saga+"Comp2">);

dep(Saga ad self, self wd Saga,

Comp bcd self); }

commit { alias (Comp <""+Saga+"Comp2">);

dep(CompPrev wcd Comp, Comp cmd Saga,

Comp bad Saga); }}

In this code, we see how this step obtains references
to the saga and to other transactions and names itself,
before defining a compensating transaction. At begin
and commit time, dependencies are placed between
these, to ensure correct compensation when required.

It is clear that the KALA code above is more com-
plex than the definition in the saga language, while in
effect describing the same thing. This clearly shows
how the use of a DSL has raised the level of ab-
straction to the level of the concepts available in the
ATMS, further reducing complexity of usage.

ASPECT-ORIENTED DOMAIN SPECIFIC LANGUAGES FOR ADVANCED TRANSACTION MANAGEMENT

431



5.2 Open set of language features

Instead of implementing a DSL compiler for each
ATM from scratch, we have chosen for a modular ap-
proach that can exploit the common language features
of the different DSLs. The division of a ATM specific
DSL into modular and reusable language features is
hampered because the effects of these language fea-
tures are scattered in the resulting KALA program.
For example, take the four basic language features of
the Saga DSL:name (denoting the step name),saga,
step andcomp, which should correspond with four
modules. As we have seen in 5.1, each step results in
a single KALA transaction.

When modularizing the saga language definition,
the step and its compensation description are sepa-
rated into two modules, each module yielding a par-
tial transaction description. When the two language
features are combined into single language, the two
partial descriptions must be combined together to a
single KALA transaction. However, the name of a
compensating transaction is not confined to just one
step, but it is present in different steps, i.e. each step is
linked to other steps. This entails that thecomp mod-
ule needs to invasively change differentsteps with
additional dependencies for the compensating trans-
actions, which hampers the division of the DSL into
reusable modules. In order to separate these differ-
ent language features into reusable modules, a system
supporting such invasive composition is required.

Keeping both the modularity and invasive composi-
tion requirements in mind, the Linglet Transformation
System (LTS) (Cleenewerck, 2003) seemed the most
appropriate system. In LTS a language implemen-
tation is divided into smaller reusable components,
each defining a small language feature. The languages
in LTS are constructed by composing these modular
and reusable language components (called linglets)
together. In LTS, for each of the four basic language
features of the Saga DSL (name, saga, step and
comp) a linglet is built. With these four language fea-
tures the Saga DSL can be specified through composi-
tion. This composition is achieved by customizing the
linglet definitions with other linglets. Also, these lin-
glets have been reused when building the RCS DSL,
which is an extension of the Saga DSL.

In total, we have built four DSLs: one for classical
transactions, and three for the ATMS mentioned here,
of which we have shown two, out of a set of seven
different language components.

6 CONCLUSIONS

Advanced transaction models address shortcomings
in the classical transaction model, but are difficult to

use for the application programmer due to their com-
plexity and the lack of separation of concerns. Appli-
cation programmers need detailed knowledge of the
advanced transaction models to use them in their soft-
ware and must spread the configuration information
for these models throughout the code.

In this paper, we reduced this complexity by pro-
viding a open family of domain-specific languages,
each of which tailored for one specific ATMS.
These languages allow the application programmers
to declaratively state the transactional properties at a
high level of abstraction, in a specification separate
from the base application.

To reach this goal, we used Domain-specific lan-
guages and Aspect-Oriented Programming. As a re-
sult, two contributions have been made: the imple-
mentation of an aspect language, KALA, to express
advanced transaction models and the development of
an open set of language features to raise the abstrac-
tion level of KALA to concepts found in ATMS.

ACKNOWLEDGMENTS

We thank Kris Gijbels and Wolfgang De Meuter
for their valuable feedback when proof-reading, and
Theo D’Hondt for supporting this research.

REFERENCES

Cleenewerck, T. (2003). Component-based dsl develop-
ment. InProceedings of GPCE’03 Conference, LNCS
2830, pages 245–264. Springer-Verlag.

Elmagarmid, A. K., editor (1992).Database Transaction
Models For Advanced Applications. Morgan Kauf-
mann.

Garcia-Molina, H. and Salem, K. (1987). Sagas. InPro-
ceedings of the ACM SIGMOD Annual Conference on
Management of data, pages 249 – 259.

Gray, J. and Reuter, A. (1993).Transaction Processing,
Concepts and Techniques. Morgan Kaufmann.

Jajodia, S. and Kershberg, L., editors (1997).Advanced
Transaction Models and Architectures. Kluwer.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Videira Lopes, C., Loingtier, J.-M., and Irwin, J.
(1997). Aspect-oriented programming. InProceed-
ings of ECOOP 1997. Springer Verlag.

Moss, E. B. (1981). Nested transactions: An approach to
reliable distributed computing. Technical report.

Tarr, P. L., Ossher, H., Harrison, W. H., and Jr., S. M. S.
(1999). N degrees of separation: Multi-dimensional
separation of concerns. InInternational Conference
on Software Engineering, pages 107–119.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

432


