
CWM-BASED INTEGRATION OF XML DOCUMENTS AND
OBJECT-RELATIONAL DATA

Iryna Kozlova, Martin Husemann, Norbert Ritter, Stefan Witt, Natalia Haenikel
Distributed Systems and Information Systems, University of Hamburg, Germany

Keywords: Schema integration, XML Schema, SQL:1999, metamodel, CWM

Abstract: In today’s networked world, a plenitude of data is spread across a variety of data sources with different data
models and structures. In order to leverage the potential of distributed data, effective methods for the
integrated utilization of heterogeneous data sources are required. In this paper, we propose a model for the
integration of the two predominant types of data sources, (object-)relational and XML databases. It employs
the Object Management Group’s Common Warehouse Metamodel to resolve structural heterogeneity and
aims at an extensively automatic integration process. Users are presented with an SQL view and an XML
view on the global schema and can thus access the integrated data sources via both native query languages,
SQL and XQuery.

1 INTRODUCTION

Nowadays, relational and object-relational database
management systems are the most widespread ones
in practical use while so-called native XML DBMSs
(e.g., Tamino (Tamino, 2004)) gain popularity since
they provide means for storage and management of
XML documents in a native format. The looming
parallel existence of two popular types of database
management systems calls for means to effectively
integrate (object-)relational and XML data sources.

This can be achieved by introducing a
middleware layer that provides a uniform interface
for querying and updating both XML and
(object-)relational data in their local data sources.
The key idea here is a schema integration process
that generates a single global schema comprising the
entire information about the local data sources.
During this process, conflicts arising from structural
and semantic heterogeneity must be resolved.

We introduce an integration middleware called
SQXML. The name represents the focus on the two
data models and their unification into a common
metamodel. SQXML provides a number of unique
features for efficient handling of information stored
in (object-)relational and XML data sources, most
prominently the provision of two views on the
integrated data sources, an SQL view and an XML
view, allowing users to view the entire information
in their preferred format. The integrated data can be

accessed via both native query languages, SQL and
XQuery, while the local data sources remain
unchanged.

In this paper, we focus on the SQXML approach
to generating the global schema. This novel
approach is based on the Common Warehouse
Metamodel (CWM) (OMG, 2003), which has been
used to create a CWM-based SQXML metamodel
unifying the object-relational (SQL:1999) and XML
Schema metamodels. The process of creating the
global schema is conducted almost automatically,
requiring user interaction only during the schema
matching phase in order to improve the resolution of
semantic conflicts.

The paper is organized as follows: Section 2
presents a sample integration scenario. An overview
of the SQXML system is given in Section 3. Section
4 delineates our solution to the structural
heterogeneity problem, introducing the SQXML
metamodel that unifies the concepts of SQL and
XML. Section 5 describes the approach to resolving
the semantic heterogeneity between the local
SQXML schemas and to creating the global schema.
In Section 6, the conversion process that transforms
the global SQXML schema into the global
SQL:1999 and XML Schema representations is
proposed. Section 7 gives a survey of existing
related integration approaches, and section 8
concludes the paper.

35
Kozlova I., Husemann M., Ritter N., Witt S. and Haenikel N. (2005).
CWM-BASED INTEGRATION OF XML DOCUMENTS AND OBJECT-RELATIONAL DATA.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 35-43
DOI: 10.5220/0002523300350043
Copyright c© SciTePress

2 MOTIVATING EXAMPLE

In this section, a simple example is given to
illustrate the SQXML integration approach. It will
be used as a running example throughout the paper.
For the sake of simplicity, we consider only one
local object-relational data source and one local
XML data source – in general, the goal of SQXML
is to operate on more than two local sources.

Suppose there are two data sources, one (object-)
relational and the other XML-based, both storing
information about books (see local schemas in
Figure 1). The local relational schema contains the
tables books and authors, which hold titles,
publishers and author names of books on the topics
‘Java’ and ‘XML’. In contrast, the local XML
source stores information on Java books only, and its
XML Schema definition contains a complex type
javabook that consists of elements title,
author, price, and publisher.

Figure 1: Sample local and global schemas

Beside the metamodel conflicts between SQL:1999
and XML Schema, the following representation
conflicts between the local schemas are obvious:
First, there is a conflict of missing attributes

Figure 2: Query processing

because price is missing in the relational schema
and topic in the XML Schema definition. Second,
there are an entity-versus-attribute conflict and an
attribute concatenation conflict regarding the
information about authors.

Such structural and semantic conflicts are
resolved by the SQXML integration process
resulting in two semantically equivalent global
schemas, as those shown in Figure 1. The SQXML
run-time component accepts SQL as well as XQuery
queries and processes them by query splitting and
result synthesis, as illustrated in Figure 2.

3 SQXML OVERVIEW

The major components of the SQXML Integration
System are illustrated in Figure 3. At the Data Level
we consider SQL:1999 databases and XML data
sources (providing XML schemas and XQuery
support). The User/Application Level at the top
represents two views on the integrated data, an SQL-
view available to SQL users/applications and an
XML-view available to XML users/applications.

Local XML Schema

<xsd:complexType name=“javabook“>
<xsd:sequence>

<xsd:element name=“title“ type=“xsd:string“/ >
<xsd:element name=“author“ type=“xsd:string“/ >
<xsd:element name=“price“ type=“xsd:decimal“/ >
<xsd:element name=“publisher“ type=“xsd:string“/>

</xsd:sequence>
</xsd:complexType>

Local SQL:1999 Schema
CREATE TABLE books (

booktitle VARCHAR(30),
author INTEGER REFERENCES authors,
publisher VARCHAR(20),
topic VARCHAR(4),
CHECK (topic IN (‘Java‘, ‘XML‘))

);
CREATE TABLE authors (

authorID INTEGER PRIMARY KEY,
firstName VARCHAR(20),
lastName VARCHAR(20)

) ;

Global SQL:1999 Schema

CREATE TABLE books (
booktitle VARCHAR(30),
author VARCHAR(40),
publisher VARCHAR(20),
price DECIMAL(5,2),
topic VARCHAR(4),
CHECK (topic IN (‘Java‘, ‘XML‘))

);

Global XML Schema
<xsd:complexType name=“books“>

<xsd:sequence>
<xsd:element name=“booktitle“ type=“xsd:string“/>
<xsd:element name=“author“ type=“xsd:string“/>
<xsd:element name=“publisher“ type=“xsd:string“/>
<xsd:element name=“price“ type=“xsd:decimal“/>
<xsd:element name=“topic“/>

<xsd:simpleType>
<xsd:restriction base=“xsd:string“>

<xsd:enumeration value=“Java“/>
<xsd:enumeration value=“XML“/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>

Local XML Schema

<xsd:complexType name=“javabook“>
<xsd:sequence>

<xsd:element name=“title“ type=“xsd:string“/ >
<xsd:element name=“author“ type=“xsd:string“/ >
<xsd:element name=“price“ type=“xsd:decimal“/ >
<xsd:element name=“publisher“ type=“xsd:string“/>

</xsd:sequence>
</xsd:complexType>

Local SQL:1999 Schema
CREATE TABLE books (

booktitle VARCHAR(30),
author INTEGER REFERENCES authors,
publisher VARCHAR(20),
topic VARCHAR(4),
CHECK (topic IN (‘Java‘, ‘XML‘))

);
CREATE TABLE authors (

authorID INTEGER PRIMARY KEY,
firstName VARCHAR(20),
lastName VARCHAR(20)

) ;

Global SQL:1999 Schema

CREATE TABLE books (
booktitle VARCHAR(30),
author VARCHAR(40),
publisher VARCHAR(20),
price DECIMAL(5,2),
topic VARCHAR(4),
CHECK (topic IN (‘Java‘, ‘XML‘))

);

Global XML Schema
<xsd:complexType name=“books“>

<xsd:sequence>
<xsd:element name=“booktitle“ type=“xsd:string“/>
<xsd:element name=“author“ type=“xsd:string“/>
<xsd:element name=“publisher“ type=“xsd:string“/>
<xsd:element name=“price“ type=“xsd:decimal“/>
<xsd:element name=“topic“/>

<xsd:simpleType>
<xsd:restriction base=“xsd:string“>

<xsd:enumeration value=“Java“/>
<xsd:enumeration value=“XML“/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>

SQLXQuery

XML-View

User/Application
Level

SQL-View

XML DBSQL:1999 DB
Data Level

INTEGRATED GLOBAL SCHEMA

Result set construction

SQXML

Schema integration

View definitionQuery transformation

SQLXQuery

XML-View

User/Application
Level

SQL-ViewSQL-View

XML DBXML DBSQL:1999 DBSQL:1999 DB
Data Level

INTEGRATED GLOBAL SCHEMA

Result set construction

SQXML

Schema integrationSchema integration

View definitionView definitionQuery transformationQuery transformation

Figure 3: SQXML System

The layer between the User/Application Level and
the Data Level contains the actual SQXML
Integration System, which is an integration
middleware layer. It comprises the schema
integration component (in charge of creating the
integrated global schema), the view definition
component (in charge of creating XML and SQL
views), and the query transformation and result set
construction components (in charge of evaluating
global user queries). In this paper, we focus on the
process of creating the global schema.

User/Application

SQXML Integration System
(query processing component)

SQL:1999
Database

XML
Source

SQL or
XQuery

SQL result
table

result table or
XML document

XQuery result XML
document

User/Application

SQXML Integration System
(query processing component)

SQL:1999
Database

XML
Source

SQL or
XQuery

SQL result
table

result table or
XML document

XQuery result XML
document

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

36

4 RESOLVING STRUCTURAL
HETEROGENEITY

SQL:1999 and XML Schema use different
constructs to represent schemas. The main idea to
resolve this structural heterogeneity is to unify SQL
and XML concepts into a single set of concepts.
This idea has been implemented in a new metamodel
called SQXML, representing a superset of both
models. The SQXML metamodel is used as a
common data model to achieve a structurally
homogeneous representation of the local SQL and
XML schemas. Represented in terms of the SQXML
metamodel, the local schemas can then be used in
the actual process of creating the integrated global
schema. The uniform representation of the local
schemas facilitates the automation of the integration
process as automatic schema-matching and schema-
merging techniques can be used. The resulting
global SQXML schema comprises the complete
information stored in the local data sources. In the
final phase of the process, the global schema is
converted into the data sources’ native
representations, creating two semantically equivalent
global schemas in terms of SQL:1999 and XML
Schema that are presented to the user. This allows
the user to formulate queries in SQL or XQuery.

For building the SQXML metamodel we used
the Common Warehouse Metamodel (CWM) (OMG,
2003). CWM is a metamodel of a generic data
warehouse architecture. Its original purpose is to
standardize the exchange of models between data
warehousing applications and repositories in
distributed, heterogeneous environments. Thus,
CWM offers a way to represent schemas, i.e., the
models, of heterogeneous information sources.
CWM consists of multiple components. The
Resource component includes packages for
metamodels of object-oriented, relational, record,
multidimensional, and XML data resources. The

Relational and XML packages are of special interest
for integration in our case.

There are a number of reasons to use CWM for
the unification of SQL:1999 and XML Schema.
Most importantly, CWM defines a standardized way
to represent heterogeneous models and a
standardized terminology for modelling. With the
Relational and the XML package it already provides
a metamodel for SQL:1999 and XML DTD, which
can be used as a starting point for the unification.
Note that there is no package for XML Schema in
CWM 1.2. Therefore we propose (Section 4.2) a
prototype of a CWM XML Schema Definition
(CWM XSD).

The model hierarchies of SQL:1999, XML
Schema, and SQXML, according to the OMG
metadata architecture (OMG; 2003), are shown in
Table 1.

Table 1: Metamodel hierarchy

Integrated DataXML DocumentsDatabaseM0: Instances (Data)

SQXML SchemaXML Schema DefinitionDatabase SchemaM1: Model (Schema)

SQXMLCWM:XML SchemaCWM:Relational PackageM2: Metamodel

MOFMOFMOFM3: Meta-Metamodel

SQXMLXML SchemaSQL:1999Meta-Level

Integrated DataXML DocumentsDatabaseM0: Instances (Data)

SQXML SchemaXML Schema DefinitionDatabase SchemaM1: Model (Schema)

SQXMLCWM:XML SchemaCWM:Relational PackageM2: Metamodel

MOFMOFMOFM3: Meta-Metamodel

SQXMLXML SchemaSQL:1999Meta-Level

As illustrated in Figure 4, SQL:1999 database
schemas and XML Schema definitions are located at
level M1 and their metamodels at level M2. The
SQXML metamodel was constructed through a
unification process conducted at level M2. For each
modelling concept of SQL:1999 and XML Schema
there is a corresponding concept in the SQXML
metamodel. For example, SQL’s Table and
SQLStructuredType and XML Schema’s
ComplexTypeDefinition have been unified into
SQXML’s Entity concept (see detailed discussion in
Section 4.3). SQXML uses the data types from XML
Schema; the SQL:1999 data types have been
converted to XML Schema simple types using the

AttributeDeclaration

SQXML Schema 1

ComplexTypeDefinition

Level M1

Transformation

SQL:1999 DB Schema XML Schema DefinitionSQXML Schema 2

Level M2

Unification

Relational Metamodel

Column

Table

SQLStructuredType

XML Schema Metamodel

ElementDeclaration

SQXML Metamodel

Entity

ComplexType

T

ST

E2

C1

C2

CTt

CTst E1

CTD

ED1
ED2

E2

E1

CTctd

AttributeDeclaration

SQXML Schema 1

ComplexTypeDefinition

Level M1

Transformation

SQL:1999 DB Schema XML Schema DefinitionSQXML Schema 2

Level M2

Unification

Relational Metamodel

Column

Table

SQLStructuredType

XML Schema Metamodel

ElementDeclaration

SQXML Metamodel

Entity

ComplexType

T

ST

E2

C1

C2

CTt

CTst E1

CTD

ED1
ED2

E2

E1

CTctd

CWM-BASED INTEGRATION OF XML DOCUMENTS AND OBJECT-RELATIONAL DATA
Figure 4: Metamodel unification and schema transformation
37

SQL/XML standard (ISO/IEC, 2003).
The transformation process conducted at level

M1 proceeds as follows: Given an SQL database
schema and an XML Schema definition, each of
them is transformed into an equivalent SQXML
schema, depicted in Figure 4 as Schema 1 and
Schema 2, correspondingly.

The overall process of creating the global
schemas is illustrated in Figure 5. The first step in
this process is the transformation step, as discussed
above. The further steps, namely matching and
merging, are discussed in Section 5, and the
concluding conversion step is discussed later in
Section 6.

Figure 5: Process of creating the global schema

4.1 CWM Relational Metamodel

The CWM standard includes the package Relational,
which is a metamodel for SQL:1999 database
schemas (OMG, 2003). The complete UML diagram
of the metamodel as well as all details on the
package dependencies can be found in (OMG,
2003).

CWM Relational does not contain support for
some of the advanced features of SQL:1999, like
privileges and access control. SQXML supports
most features of Core SQL:1999 and offers basic
object-relational support, which is not a part of Core
SQL. Since not all features of SQL are needed for

data source integration and some simplifications
facilitate the integration, the following
simplifications were applied to the CWM Relational
package for our studies:
• Catalogs are not supported, as we consider one

SQL and one XML schema.
• SQLIndices have been left out because they are

not part of SQL:1999.
• Views are not supported. The inheritance

hierarchy of ColumnSet, NamedColumnSet,
QueryColumnSets and Table collapses into a
single class Table.

• Triggers have been omitted as they are not a part
of Core SQL.

Figure 6a illustrates (simplified for the sake of
readability) the central part of the CWM Relational
metamodel as it is used in the SQXML integration
system.

SQL Database
Schema

XML Schema SQXML Schema 2
(of XML Schema)

SQXML Schema 1
(of SQL DB Schema) Merged

SQXML
SchemaMapping ModelTransformation Matching Merging

Global SQL DB
Schema

Global XML
Schema

Conversion

SQXML Schema 1
(of SQL DB Schema)

SQXML Schema 2
(of XML Schema)

SQL Database
Schema

XML Schema SQXML Schema 2
(of XML Schema)

SQXML Schema 1
(of SQL DB Schema) Merged

SQXML
SchemaMapping ModelTransformation Matching Merging

Global SQL DB
Schema

Global XML
Schema

Conversion

SQXML Schema 1
(of SQL DB Schema)

SQXML Schema 2
(of XML Schema)

4.2 CWM XML Metamodel

We developed a CWM XML Schema metamodel
(CWM XSD) based on the XML Schema
recommendation (W3C, 2001a, 2001b). Due to
space restrictions, here we only describe its
simplified version as it is used in the SQXML
integration system. In comparison to the complete
version, XML namespaces and the following classes
have been omitted: Annotation and Notation-
Declaration, WildCard and AttributeWildcard.

Figure 6b shows that the top-level container of
an XML Schema definition is the Schema class. It
contains global type definitions, global attribute and
element declarations as well as global modelling

b)

SQLStructuredType SQLSimpleTypeSQLDistinctType

*

Schema

SimpleType ComplexType

TypeDefinition

Entity

ModelGroup

*

* *

*

*

0..1
particles

particles

c)

ForeignKey

UniqueConstraint

PrimaryKey

1..*

*

0..1

*
*

*

0..1 0..1
0..1

1..*

*

BuiltInSimpleType Facet
*

…Facet …Facet…

Procedure Parameter*
*type

type
*

0..1

TypeDefinition

SimpleTD ComplexTD

AttributeDeclaration

Particle

ElementDeclaration

ModelGroup

*

ModelGroup
Definition

Schema

*

*
type

*

type

*

0..1 *

Term

a)

Table

Column

Schema

*

*

type
*
0..1

SQLDataType

*

0..1

Procedure

SQLParameter

*0..1

0..1

*

b)

SQLStructuredType SQLSimpleTypeSQLDistinctType

*

Schema

SimpleType ComplexType

TypeDefinition

Entity

ModelGroup

*

* *

*

*

0..1
particles

particles

c)

ForeignKey

UniqueConstraint

PrimaryKey

1..*

*

0..1

*
*

*

0..1 0..1
0..1

1..*

*

BuiltInSimpleType Facet
*

…Facet …Facet…

Procedure Parameter*
*type

type
*

0..1

TypeDefinition

SimpleTD ComplexTD

AttributeDeclaration

Particle

ElementDeclaration

ModelGroup

*

ModelGroup
Definition

SchemaSchema

*

*
type

*

type

*

0..1 *

Term

a)

Table

Column

Schema

*

*

type
*
0..1

SQLDataType

*

0..1

Procedure

SQLParameter

*0..1

0..1

*

Figure 6: Simplified UML diagrams of:
a) CWM:Relational metamodel, b) XML Schema metamodel, c) SQXML metamodel

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

38

groups for elements and attributes. TypeDefinition is
the central class for the definition of a type
hierarchy. It is an abstract class which is specialized
by SimpleTypeDefinition and Complex-
TypeDefinition.

The class SimpleTypeDefinition has been defined
according to the XML Schema Definition Part 2
(W3C, 2001b): Each simple type is either built-in or
user-defined. A simple type is constrained by a set
of facets. These include the fundamental facets and
constraining facets, which are instances of the Facet
class (not shown in Figure 6b).

A ComplexTypeDefinition consists of
AttributeDeclarations and ElementDeclarations,
which can be combined using supplemental schema
components. As shown in Figure 6b, a
ComplexTypeDefinition cannot directly contain
ElementDeclarations, but must use a ModelGroup
(“sequence”, “choice”, or “all”) that contains
ElementDeclarations. It is modelled as follows: A
ComplexTypeDefinition contains a Particle; the
Particle must contain a ModelGroup, which is a
special kind of Term; a ModelGroup may then
contain other ModelGroups or ElementDeclarations.

Finally, ElementDeclarations can be constrained
by IdentityConstraintDefinitions, which are the key
constraints in XML Schema. The Identity-
ConstraintCategory attribute indicates the constraint
category: key specifies a primary key, keyref a
foreign key, and unique a unique constraint (not
shown in Figure 6b).

4.3 CWM SQXML Metamodel

With our approach, the essential step to resolve the
structural heterogeneity between SQL:1999 and
XML Schema was to unify the SQL:1999
metamodel (Section 4.1) and the XML Schema
metamodel (Section 4.2) into a single SQXML
metamodel. Its simplified class diagram is depicted
in Figure 6c.

The top-level container of SQXML is Schema. A
schema can contain TypeDefinitions, Entities and
Procedures. The Procedure class is the same as in
SQL because there are no routines in XML Schema.
The TypeDefinition class is used for modelling the
type hierarchies of SQL and XML. TypeDefinition is
an abstract class, which can be either SimpleType or
ComplexType.

The SimpleType class unifies the
SimpleTypeDefinition of XML Schema with
SQLSimpleType and SQLDistinctType of SQL. It is
entirely the same as SimpleTypeDefinition of the
XML Schema metamodel for two reasons: First, it is
trivial to map XML Schema data types to SQXML
data types (Section 4), and second, the mapping

from SQL to SQXML data types can be performed
using the SQL/XML standard (ISO/IEC, 2003)
(a detailed discussion is omitted here due to space
restrictions).

The ComplexType class is a unification of
structured types: It unifies XML Schema’s
ComplexTypeDefinition with Table and
SQLStructuredType of SQL (see also Figure 4). In
SQL:1999, tables and structured user-defined types
are similar enough to be unified. The information
from what an SQXML ComplexType originates is
stored in an additional Context class (not shown in
Fig. 6c) that is associated with the Entity class and
used during the conversion of the global SQXML
schema to SQL and XML Schema in the last step of
the integration process. The content of a
ComplexType is always a ModelGroup. This reflects
the modelling concept of XML Schema, which
requires a ComplexTypeDefinition to contain a
Particle containing a ModelGroup.

The class Entity unifies SQL’s Columns with
XML Schema’s ElementDeclaration and
AttributeDeclaration (see also Figure 4). The latter
two classes are similar enough to be unified into a
single class, and the origin of each of them is stored
in the Context class.

The classes ForeignKey, UniqueConstraint,
PrimaryKey, and CheckConstraint of SQL and the
IdentityConstraintDefinition of XML Schema
provide the same concepts in a different syntactical
representation, so it is straightforward to convert the
XML Schema concepts to SQL, i.e., key from
IdentityConstraintDefinition becomes PrimaryKey,
keyref becomes ForeignKey, and unique becomes
UniqueConstraint.

To construct the SQXML metamodel, we have
considered the modelling concepts of SQL:1999 and
XML Schema as well as the structures (i.e., classes
and relationships) of the CWM Relational and CWM
XML Schema metamodels. Thus, each supported
SQL:1999 and XML Schema concept is also
available in SQXML and can be expressed in terms
of the SQXML metamodel.

5 RESOLVING SEMANTIC
HETEROGENEITY

The structural heterogeneity between SQL:1999 and
XML Schema has been resolved by the unification
approach described in Section 4. After the
transformation step (Figure 5), the local SQL and
XML schemas are represented in terms of the
SQXML metamodel, later on referred to as SQXML
Schema 1 and SQXML Schema 2. As shown in
Figure 5, the next steps of creating the global

CWM-BASED INTEGRATION OF XML DOCUMENTS AND OBJECT-RELATIONAL DATA

39

schema are schema matching and schema merging to
resolve the semantic heterogeneity between the local
schemas. The goal of schema matching is to find
how the schema elements of different schemas
correspond to each other and to identify
representation conflicts between the schemas. Using
these correspondences, the two local SQXML
schemas are merged, resulting in the global SQXML
schema.

5.1 Schema Matching

The traditional way to obtain a mapping model is
having a domain expert create it manually,
sometimes with the help of tools providing visual
editing.

The desirable alternative is to conduct automatic
schema matching. Different schema matching
algorithms have recently been developed. A
comparison and classification of their performance
can be found in (Rahm and Bernstein, 2001). Based
on these results, the Cupid algorithm (Madhavan et
al, 2001) has been chosen as automatic schema
matcher for SQXML. The matching process in
Cupid is both linguistic-based and constraint-based:
It compares elements by discovering element name
and data type similarities and analyzing the positions
of the elements in the schema. The Cupid algorithm
takes two schemas S1 and S2 as input and returns a
mapping. A mapping is defined as a set of mapping
elements, each of which indicates that certain
elements of schema S1 correspond to certain
elements of S2 (Rahm and Bernstein, 2001).

Figure 7: Sample (local) SQXML schemas and
corresponding mapping model

The Cupid algorithm cannot identify and solve all
representation conflicts. Thus, an enhancement of
the mapping result is needed. For this, we use a
notion of a mapping model (similar to (Pottinger and
Bernstein, 2003)) that identifies (in addition to the
corresponding schema elements detected by Cupid)
containment relations between mapping elements, as

illustrated in Figure 7: It shows the local schemas
from our example (Section 2), represented as
SQXML schemas, and the mapping model between
them. There are ‘equality’ mapping elements, like
m5, that indicate semantically equal elements, and
‘similarity’ mapping elements, that are represented
using a similarity mapping function. In Figure 7, the
‘similarity’ mapping element m2 and a
concatenation function f solve the attribute
concatenation conflict regarding the representation
of the author name.

5.2 Schema Merging

The mapping model resulting from the schema
matching is required for the schema merging phase.
Schema merging is performed by a merge operator
(Bernstein et al, 2000), which takes two schemas S1
and S2 and a mapping model M between S1 and S2
as input and produces the merged schema SM as a
result. It uses the correspondences between the
schemas to merge equal or similar elements into
single schema elements in the merged schema.

From the existing schema merging algorithms,
the Vanilla algorithm has been chosen (Pottinger and
Bernstein, 2003). SQXML uses an improved version
of Vanilla, as discussed in the following.

One essential drawback of the Vanilla algorithm
is that schema elements that are related by a
‘similarity’ mapping element remain separated in the
merged schema. Our solution to this problem is to
declare one of the schemas as ‘preferable’. The
‘similarity’ mapping elements are then treated as
‘equality’ mapping elements, and the elements of the
‘preferable’ schema are taken over into the merged
schema. During query processing, the similarity
mapping function is applied to the instances of one
local data source to display them according to the
representation used in the global schema. In our
example (Section 2), the element author is taken
over into the global schema, so that during query
processing the concatenation function is applied to
the elements firstName and lastName to
represent them as required by the global schema.

SQL Schema

publisher

XML Schema

sql.books xml.javabook

author

lastName

booktitle

authorID

firstName

author

title

price

sql.authors

topic

=

=

= =

= publisher

~
f

=

m1

m2

m4m3

m5

m6

SQL Schema

publisher

XML Schema

sql.books xml.javabook

author

lastName

booktitle

authorID

firstName

author

title

price

sql.authors

topic

=

=

= =

= publisher

~
f

=

m1

m2

m4m3

m5

m6

Another drawback of Vanilla is that it does not
store information about the relationship between the
local schemas and the global schema. This
relationship, also called semantic mapping, is later
on needed for query processing. Therefore, we
propose to co-create the semantic mapping during
the schema matching and schema merging steps
when all the required information is available.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

40

6 CONVERSION PROCESS

The integration steps described in sections 4 and 5
result in the integrated global schema, expressed in
terms of the SQXML metamodel. As a last step, the
global SQL:1999 schema and the global XML
Schema definition are created through the
conversion process, which is reverse to the
transformation process.

Since the SQXML metamodel uses data types
from XML Schema (Section 4) it is trivial to map
SQXML data types to XML Schema data types.
Converting SQXML types to SQL:1999 types is not
that straightforward. Some XML types, e.g., the
Gregorian Calendar types, have no direct
correspondences in SQL:1999. For XML types with
unbounded cardinality, such as integer and string, an
exact mapping cannot be provided either. Only
bounded subsets, i.e., integers with a maxInclusive
or maxExclusive facet or subtypes of integer
such as int or long, can be mapped exactly. In
this case, facets in XML Schema are converted to
appropriate check constraints in SQL:1999.

Figure 8: Conversion algorithm

The conversion algorithm, which takes an SQXML
schema S as input and produces an SQL:1999
schema represented in terms of the CWM Relational
metamodel, is outlined in Figure 8. The schema
conversion is done using a top-down approach – the
schema S is traversed starting from globally defined
types and entities. First, all globally defined complex
types are mapped to structured user-defined types
(lines 3-5). Next, global entities are mapped to typed
tables (lines 6-8). User-defined structured types may
not have constraints in SQL:1999, so constraints are
discarded (line 10). Furthermore, if there is only one
typed table of a structured type or if there was no
structured type in the original SQL schema (i.e., if it

was originally a table in the local schema, according
to the information stored in the Context class) the
type is eliminated (line 11) because it is not
required. The structured types, typed tables, tables,
and procedures are glued together to an SQL:1999
schema (line 13).

The algorithms for the conversion of complex
types, entities and procedures are not presented here
due to space restrictions, as well as the conversion
algorithm from SQXML schema to XML Schema
definition.

The conversion process is also used for creating
an SQL view of the local XML schema as well as an
XML view of the local SQL schema, which are
needed to perform query processing.

A global query (SQL or XQuery) submitted by
the user to the SQXML middleware is formulated on
the global schema (SQL:1999 or XML Schema
respectively), so it must be split and reformulated in
terms of the local schemas to access the data in the
local sources (Figure 2). For this, the relationship
between the global schema and the local schemas
(the semantic mapping) is needed. SQXML uses the
global-as-view (GAV) approach (Halevy, 2000),
where the global schema is defined as a view on the
local schemas. The GAV approach was chosen
because that way the splitting of the global query
into the local queries is a simple process of view
unfolding. For the global SQL:1999 schema, the
query plans are based on SQL, so that an SQL:1999
view on the local XML schema is needed to answer
queries. Analogously, for the global XML Schema,
an XML view on the local SQL schema has to be
generated. This task is solved by applying the
conversion process to each local SQXML schema.

1 convertSchemaToSQL(Schema S)
2 begin
3 for each ComplexType t in S do
4 convertComplexType(type: t);
5 end for
6 for each global Entity e in S do
7 convertEntity(type:createTable(),
 entity:e, mixed:FALSE, alwaysNullable:FALSE);

8 end for
9 for each structured type t do
10 delete constraints from t;
11 if t is referenced only once
 or t.context is marked as table

then eliminate t;
12 end for
13 create SQL schema from structured types,
 typed tables, tables, procedures;
14 output SQL schema;
15 end;

7 RELATED APPROACHES

A wide spectrum of approaches related to our topic
has been developed. First of all, the information
integration systems developed for retrieving and
managing data stored in heterogeneous sources are
to be mentioned. Research and commercial
approaches to the problem of information integration
vary in the methods and techniques they use.

The wrapper-mediator approach, which is often
used in integration systems, is based on the
following idea: The data models of the local data
sources are first converted to a common data model
supported by the integration system. This translation
is conducted by wrappers, that is, hard-coded. The
integration rules are hard-coded as well and defined
in mediators. The end user’s view in this case is a
schema that is provided by some mediator. Such
approaches are quite good at resolving the

CWM-BASED INTEGRATION OF XML DOCUMENTS AND OBJECT-RELATIONAL DATA

41

heterogeneity problems; structural heterogeneity is
resolved at the wrapper level and semantic
heterogeneity is homogenized by the mediators.
Examples of such approaches are the TSIMMIS
(Garcia-Molina et al, 1997) and Florid (Ludäscher et
al, 1998) integration systems. TSIMMIS implements
virtual (or logical) integration, meaning that the data
stays in the sources and is delivered to the user on
request only. Florid follows the materialized
integration approach: the data from the local sources
is integrated and materialized so that the global
query is directly evaluated on the integrated set of
data.

The Garlic (Carey et al, 1995) integration
architecture is similar to those described above, with
the difference that no mediators are used. Instead,
the integration and query transformation are
performed centralized by the ‘Query Services and
Runtime System’ component.

Another strategy is to develop a special mapping
language. Such languages, like BRIITY (Härder et
al, 1999), allow the definition of mapping rules
which, in turn, determine the interoperability
between the global schema and the local schemas.
Heterogeneity conflicts can be solved explicitly by
coding appropriate integration rules.

Recently, various data integration strategies have
been developed for the interoperability of XML and
RDBMSs. They focus on using a relational database
management system to store and query XML data:
Either an RDBMS is used to store and query XML
data, or existing relational data is presented as an
XML view to the user or application. Commercial
solutions used by object-relational database
management systems (as Oracle 9i (Higgins et al,
2002), IBM DB2 (IBM Corporation, 2002),
Microsoft SQL Server 2000 (Microsoft Corporation,
2004)) provide various mechanisms for mappings
between relational tables and XML fragments, but
they do not provide schema integration: The user
still has to know both schema definitions (no global
schema is created), to use two query languages, and
to perform combining and cleaning of query results
manually.

Among the various research approaches for
XML Publishing, we mention SilkRoute, XPeranto
and Agora here. SilkRoute (Fernandez et al, 2000)
and XPeranto (Shanmugasundaram et al, 2001)
focus on defining XML views on relational data and
evaluating XML queries by decomposing the view.
In both approaches, a virtual XML view is created
and then the XML queries (XML-QL in SilkRoute
and XQuery in XPeranto) are evaluated
on this view. These approaches use only a single
local relational data source, and their main task is to
process XML queries on it.

The Agora (Manolescu et al, 2001) approach
focuses on the problem of translating XQuery
queries into SQL. Unlike SilkRoute and XPeranto, it
can handle relational as well as XML data sources.
In contrast to SQXML, Agora uses the local-as-view
(LAV) approach (Halevy, 2000) and supports only
one language, XQuery.

Integration solutions like TSIMMIS, Garlic, and
BRIITY are more generic with respect to the data
sources that can be integrated, and considerable
efforts would be required to adapt these approaches
to support SQL:1999 and XML Schema. Also,
considerable programming efforts would be required
to code wrappers and mediators or to define the
mapping rules.

In contrast, the SQXML approach resolves the
structural heterogeneity between SQL:1999 and
XML Schema fully automatically: With the SQXML
metamodel (Section 4), SQL:1999 schemas and
XML Schema definitions can be directly
transformed into uniform representations. The
semantic heterogeneity is resolved in a near-
automatic way, only possibly requiring some manual
changes and improvements to the mapping model
during the schema matching process.

The SQXML system is aimed at providing the
user or the application with bilingual access, i.e., it
supports both query languages, SQL and XQuery. In
contrast, related approaches define a new language
(e.g., Lorel in TSIMMIS or F-Logik in Florid) or use
SQL with appropriate extensions (e.g., object-
oriented extensions of SQL in Garlic) to provide
access to the integrated data.

None of the integration systems mentioned above
supports more than one query language, and most of
the approaches require significant user support
during the integration process. The SQXML
Integration System as proposed in this paper is
aimed at simplifying and automating the integration
process as well as providing efficient data access.

8 CONCLUSIONS AND FUTURE
WORK

This paper has presented SQXML, a system
designed to implement the integration of XML and
(object-)relational data sources. SQXML provides
new features that have not been available in other
integration systems. It aims at providing near-
automatic performance, that is, user interaction is
limited to the process of resolving semantic conflicts
between the schemas. Structural heterogeneity
between the schemas is resolved fully automatically.

To unify SQL:1999 and XML Schema, concepts
of the Common Warehouse Metamodel have been

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

42

used. A new CWM metamodel for XML Schema
has been developed, and based on the CWM
Relational and XML Schema metamodels, the
SQXML metamodel has been constructed. The
problem of overcoming the structural heterogeneity
has been solved by using the CWM and SQL/XML
standards to transform SQL and XML schemas to a
unified representation in terms of the SQXML
metamodel. This technique allows for the automated
resolution of structural conflicts at the data model
level.

Solutions to the problems of matching and
merging two SQXML schemas have been proposed.
An enhanced Cupid matching algorithm is used to
find correspondences between the schemas, and an
improved Vanilla algorithm is used for schema
merging.

An approach for converting an SQXML schema
to SQL:1999 and to XML Schema has been
presented. Applied to the global SQXML schema, it
results in the global SQL and XML schemas,
concluding the schema integration process and
allowing access to the integrated information in both
local sources’ query languages – SQL and XQuery.

Future work is aimed at enhancing the query
processing to support updates of the local data
sources through the global schema. Further aspects
we plan to investigate are data cleaning and
instance-level integration. Data cleaning deals with
the problem of handling inconsistencies between the
local data sources, e.g., data entries that refer to the
same real-world object, but contain contradictory
values. Instance-level integration is concerned with
the matching and integrated processing of local data
entries that contain different aspects of the same
real-world object.

REFERENCES

Bernstein, P. A. et al., 2000: A Vision for Management of
Complex Models. In: SIGMOD Record, Vol. 29, pp.
55-63.

Carey, M. et al., 1995: Towards heterogeneous multimedia
information systems: The Garlic approach. In: Proc. of
the 5th International Workshop on Research Issues in
Data Engineering, pp. 124-131.

IBM Corporation, 2002: XML Extender Administration
and Programming, Version 8. ftp://ftp.software.ibm.
com/ps/products/db2/info/vr8/pdf/letter/db2sxe80.pdf

Fernandez, M. et al., 2000: SilkRoute: Trading between
relations and XML. In: WWW9/Computer Networks,
33(16), pp. 723-745.

Garcia-Molina, H. et al., 1997: The TSIMMIS Approach
to Mediation: Data Models and Languages. In: Journal

of Intelligent Information Systems, vol. 8, pp. 117-
132.

Halevy, A., 2000: Logic-based techniques in data
integration. In: Logic Based Artificial Intelligence, pp.
575-595.

Härder, T. et al., 1999: The intrinsic problems of structural
heterogeneity and an approach to their solution. In:
The VLDB Journal, 8, pp. 25-43.

Higgins, S. et al., 2002: Oracle 9i XML Developers Guide
– Oracle XML DB, Release 2 (9.2). Oracle
Corporation.

International Organization for Standardization. ISO/IEC
9075-14:2003: Information technology – Database
languages – SQL – Part 14: XML-Related
Specifications (SQL/XML).

Ludäscher, B. et al., 1998: Managing Semistructured data
with FLORID: A Deductive Object-Oriented
Perspective. In: Information Systems, 23(8), pp. 589-
612.

Madhavan, J. et al., 2001: Generic Schema Matching with
Cupid. In: Proceedings of the 27th VLDB Conference,
Roma, Italy, pp. 49-58.

Microsoft Corporation, 2004: SQL Server 2000 Product
Documentation. http//www.microsoft.com/sql/
techinfo/productdoc/2000/books.asp

Manolescu, I. et al., 2001: Answering XML queries over
heterogeneous data sources. In: Proc. of the 27th
VLDB Conf., Roma, Italy.

OMG, 2003: Common Warehouse Metamodel (CWM)
Specification, Version 1.1 Volume 1. Object
Management Group (OMG) Specification.

Pottinger, R. A., Bernstein, P. A., 2003: Merging Models
Based on Given Correspondences. In: Proc. of the
29th VLDB Conference, Berlin, Germany, pp. 862-
873.

Rahm, E., Bernstein, P. A., 2001: A Survey of Approaches
to Automatic Schema Matching. In: VLDB Journal
10(4), pp. 334-350.

Shanmugasundaram, J. et al., 2001: Querying XML views
of relational data. In: Proc. of the 27th VLDB
Conference, Roma, Italy.

Tamino XML Server, Software AG, 2004:
http://www2.softwareag.com/corporate/products/
tamino/default.asp

W3C, 2001a: XML Schema Part 1: Structures. W3C
Recommendation.

W3C, 2001b: XML Schema Part 2: Datatypes. W3C
Recommendations.

CWM-BASED INTEGRATION OF XML DOCUMENTS AND OBJECT-RELATIONAL DATA

43

ftp://ftp.software.ibm/

