
A NON PROPRIETARY FRAMEWORK FOR POLICY
CONTROLLED MANAGEMENT OF THE MODEL IN THE MVC

DESIGN PARADIGM

Aaron Jackson
NUI Maynooth, Maynooth, Co. Kildare, Ireland

John G Keating
IBM Dublin Centre for Advanced Studies, Cloughran, Dublin 17, IRELAND

and
NUI Maynooth, Maynooth, Co. Kildare, Ireland

Keywords: WWW, Content Management, Policy, MVC, XML, JAVA, component-based, Model, View, Controller.

Abstract: There are a variety of systems available to help automate and control the Web Content Management (WCM)
process. Most of these systems are modelled using the Model-View-Controller (MVC) design paradigm. This
is a design technique frequently adopted by software developers to assist in modularity, flexibility, and re-use
of object oriented web developments. This design paradigm involves separating the objects in a particular
interaction into 3 categories for the purpose of providing a natural set of encapsulating boundaries, encourag-
ing many-to-many relationships along the separate component boundaries, and segregating presentation and
content. These MVC based systems control what is known as static content. In this paper we propose a
new framework for controlling the software tools used in MVC based systems. More precisely, the auto-
matic deployment of model software tools based on XML defined policies. This framework incorporates a
non-proprietary component based architecture and well structured representations of Policies. The Policies
are not embedded in the system, they are generated, and therefore each component is self contained and can
be independently maintained. Our framework will work on a centralized or distributed environment and we
believe that the use of this framework makes it easier to deploy MVC based systems.

1 INTRODUCTION

The pervasive nature of the Web means that it has
become the preferred vehicle for content distribu-
tion. The explosive growth of the Internet, in par-
ticular the World Wide Web, has resulted in heavy
demands being placed on Internet servers and has
raised great concerns in terms of performance, scal-
ability and availability (Yang and Luo, ICDCS 2000).
In order to address these issues, with a main focus
on performance, several approaches have been ex-
amined. The three most prominent approaches to
managing the performance of applications include the
IntServ/RSVP (Braden, 1997) signaling approach, the
DiffServ approach (Blake, 1998) and the content dis-
tribution approach (Akamai, 2004) (Digital, 2004).
Whilst each of these approaches have their own ad-
vantages, they all require a consistent configuration
of a large number of widely distributed devices. The
paradigm of using policy based techniques addresses
this issue and is being developed for Integrated ser-

vices and Differentiated services technologies by var-
ious groups working within the IETF (Moore, 2001).
Policy based management has also been applied to
content distribution networks (Dinesh et al, 2002).

In this paper, we propose a technique for using
policy based technologies to manage code as if it
were content in a content management system. In
particular, we “generate” the software tools used in
the development of a content management system
based on the Model-View-Controller design paradigm
(MVC) (O’Reilly, 2003), specifically, the model ab-
stract classes. Most management systems today “hard
code” the model. These systems allow for manipula-
tion of the view to create desired web systems. They
tend not to deal with the model and only allow for
the development of the model tools by a prescribed
developer. There are frameworks, likeJakarta struts
(Cavaness, 2003), that allow a developer to extend the
framework for their own needs. This however, still
requires extensive development knowledge and pro-
gramming skill. We propose a framework whereby

451
Jackson A. and G Keating J. (2005).
A NON PROPRIETARY FRAMEWORK FOR POLICY CONTROLLED MANAGEMENT OF THE MODEL IN THE MVC DESIGN PARADIGM.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 451-454
DOI: 10.5220/0002521904510454
Copyright c© SciTePress



the designer does not need extensive programming
skills as the configuration and design of the deployed
systems can be done simply and effectively by editing
the configuration files or policies. This framework is
designed for integration with deployment systems for
controller and view components of an MVC design.

This paper is structured into 4 more sections. Sec-
tion 2 outlines the Framework design concepts and
gives an architectural overview. Section 3 describes
the various components and technologies within the
framework. Section 4 illustrates how this framework
is applied to a real world situation and is followed by
the conclusion.

2 FRAMEWORK DESIGN AND
ARCHITECTURAL OVERVIEW

An object-oriented abstract design, also called a
framework, consists of an abstract class for each ma-
jor component (Johnson, 1991). This framework
consists of various independently maintained com-
ponents and uses non-proprietary software technolo-
gies. Application-specific frameworks cover precise
domains, are highly re-usable and significantly reduce
the amount of development required to deploy further
customized applications (Parsons, 1999). With this
in mind, we propose a 3-tiered architectural approach
as illustrated in Figure 1. Our framework is a policy
based system. Given a set of policies, determination
of model software tools to be used may be achieved.
They are a set of rules that the developer issues to
the system for it to know how to deploy. These poli-
cies are in XML format and adhere to a specific stan-
dardized schema. This framework operates as an ex-
tension to the WCM process framework illustrated in
Figure 2.

Our framework is composed of several intercon-
nected, yet self contained components that are inde-
pendently maintained. The policies for this frame-
work are not embedded in the evaluation software, but
are introduced by the developer. This gives a level of
software manageability that cannot be achieved with
embedded systems. The first tier of our framework
defines the XML polices. This is where the deci-
sions on which tools to use occurs. The policies cre-
ated must adhere to a specified XML schema for this
framework. XML was chosen as the format for these
policies and other system components in this frame-
work because of its flexibility in structuring content
(W3C, 2004). The second tier in our framework is the
“Controller Model” (CM), which interprets the poli-
cies and formats the selection for the “Software Tool
Repository” (STR) to enable it to select the tools de-
fined by the developer. This information is used by
the third tier, STR.

Figure 1: This figure illustrates our frameworks
components

Figure 2: This diagram illustrates the integration of our
framework into the WCM process

3 COMPONENTS AND
TECHNOLOGIES

The separate components in this framework utilize
various non-proprietary technologies. Given that each
component is self contained within the framework,
the selection of technologies to use was based around
the premise that the communication protocols would
have to be a generic standard. The first tier of the ar-
chitecture used XML formatting for the policies. The

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

452



configurations are set by the developer at the first tier
and enforced into XML based on a schema. When
the policies are formed they are sent to the CM via
the SOAP messaging protocol (W3C, 2004). SOAP
is a messaging protocol that provides a way for ap-
plications to communicate with each other over the
Internet, independent of platform, which serves our
purposes exactly. Additionally, this protocol is light-
weight, requiring a minimal amount of overhead and
occurs over HTTP.

The CM receives the policies, via HTTP and SOAP
from the PM and interprets the information contained
within the policies. This information remotely calls
handlers that define the files to be retrieved from the
STR, based on the indexing system within the STR.
It then sends this information to the STR for file re-
trieval. The CM receives the desired XML file, un-
marshalls the XML in order to extract the necessary
Java abstract class information. Castor, is used to per-
form this task (W3C, 2004). These unmarshalled Java
programs are the desired abstract Java class informa-
tion for use in the creation of an MVC based web ap-
plication.

The STR is the storage repository and interface for
the abstract Java classes. A native XML database is
used as storage medium (W3C, 2004) (Berkely DB,
2004). Xpath is used to query for information and
it supports DOM and SAX. The lack of alternatives
and the undesirable results obtained with a relational
database resulted in our decision to use this technol-
ogy. Indexing, matching that of our policy informa-
tion, leads to fast retrieval of desired files from the
database. These XML files are securely sent back to
the CM for processing.

4 COMPARATIVE
IMPLEMENTATION

An example of how the proposed management of the
model would fit into a real life situation will better
help to illustrate the concept of storing code as con-
tent. A comparison of the “normal” way of writing
this model and a look at how we propose to handle the
model will yield a clearer understanding of our frame-
work. If we look at a simple web development based
on the MVC design paradigm which manages an on-
line employee database for a company. The model
functionality provides us with the ability to store, re-
trieve and edit information in a database about our
employees. The controller was written usingJakarta
Strutswith the view written using JSP’s and cascad-
ing stylesheets.

Since we’re dealing with an employee that we want
to insert, we need a way to store information about
this employee that we could hand off to a business ob-

ject (the model layer of MVC). Our model layer will
be responsible for doing the actual insert. So the first
thing we need is a class representing our employee.
We’ll make a bean that has just a couple of fields and
appropriate get and set methods. The object shown
in ’EmployeeDTO’ class will transfer stored informa-
tion from one part of our application to another, and
is therefore called a Data Transfer Object (DTO) or
Value Object. We will create an ’EmployeeService’
class to handle the small amount of business logic we
have.

The main classes used in the Struts framework
are those of org.apache.struts.action.Action. The Ac-
tion classes are the true concrete bridges between the
client’s request and the business layer. Each Action
class will handle one particular type of business op-
eration the client wants to perform. When we sub-
mit our JSP page the Action Servlet and Request-
Processor will find this Action class which we asso-
ciated with the /insertEmployee action in the struts-
config.xml file and the execute method will be called.
Since the /insertEmployee action uses the Employ-
eeForm the InsertEmployeeAction will have this form
bean of type ActionForm, so we first cast this into
type EmployeeForm. Now we want to get the infor-
mation in our EmployeeForm into the EmployeeDTO
so we can pass that off to our Model layer. We created
an instance of EmployeeDTO and then we can use
BeanUtils to transfer the data from EmployeeForm
into the EmployeeDTO.BeanUtils.copyProperties(
employeeDTO, employeeForm ).After copyProper-
ties() the now populated EmployeeDTO is passed off
to the service object and the model layer takes over.
The insertion of data is done by the EmployeeService
class and a collection of Department is returned.

From this illustration we can see that the model is
the logical operator of the system. It performs the ac-
tually desired operations on the data. In this case the
interaction with a database. In comparison to coding
this, our framework would “plug” this model com-
ponent in from a repository of model classes based
on the configurations needed which are specified in
an XML policy configuration file. This would give
a level of abstraction in the model that is not present
using the above methods.

In the above example important information per-
taining to the functionality of the model is essential
information for model selection. Pre-defined classes
are stored in XML format in an XML database. These
files are indexed so as to relate their functionality. For
example, a file would have JDBC drivers and knows
that the transport medium to the controller will be
using JavaBeans and is indexed accordingly. These
files, when selected by the “Controlling Model” in
our Framework, are unmarshalled from XML. Our
framework would plug the model into place. Utiliza-
tion of our framework allows for better re-use of the

A NON PROPRIETARY FRAMEWORK FOR POLICY CONTROLLED MANAGEMENT OF THE MODEL IN THE
MVC DESIGN PARADIGM

453



components and technologies. Using the repository of
pre-defined classes within our framework, allows for
component re-use for similar scenarios and circum-
stances. This is not achievable using existing method-
ologies as the Model would have to be re-written to a
large degree.

Another comparison to make is that of change
within the model and its affects on the system. If a
change in the model has to be made using existing
methods, the model has to be re-created, changed,
tested, re-compiled and implemented back into the
system. Using our framework the classes used in the
model are remotely stored, with respect to the system,
within the XML repository. This allows for remote
changes to be made. Testing and re-compilation will
have to occur in any realtime Object Oriented sys-
tem, however the implementation of the newer model
would be performed by our CM. This comparison,
while simplistic, illustrates how the model can be pre-
defined and then plugged into a development using
our framework.

5 CONCLUSION

This framework is the basis for storing code as con-
tent. We believe that this is the next logical step to-
wards yielding a level of automation and efficiency
that cannot occur with the management of static con-
tent alone. Our use of standardized W3C technologies
provides for excellent transferal of knowledge and
skills across heterogeneous platforms and languages,
without the risk of vendor lock-in.

Further development of this concept of storing code
as content is essential for providing a viable exten-
sion to the WCM process. This includes a standard-
ized integration technique for introducing this para-
digm into existing management systems. Ideally, we
believe this design framework should be the new stan-
dard when designing management systems in the fu-
ture. Design of management systems without adopt-
ing this technique would only serve to further stagnate
the evolution of Content Management System design.

This paper also touches on ontological philoso-
phies within computer science. Ontology is the way
we carve up reality to understand and process it, with
information being a product of that carving (Castel,
2002). In this case, the perception of managing code
as content relative to the processes that manage it. Fu-
ture work will address this ontological issue.

REFERENCES

Akamai Technologies Inc.FreeFlow content distribution
service. http://www.akamai.com.

Apache Xindice (2004). Apache Xindice.
http://xml.apache.org/xindice/. 2004 The Apache
Group.

Blake, S. (1998).An Architecture for Differentiated Servers.
Proceeding from IETF RFC 2475, 1998.

Braden, R. (1997).Resource ReSerVation Protocol (RSVP)
Version 1 - Functional Specification. Proceedings
from IETF RFC 2205, 1997.

Castor.org(2004). The Castor Project.
http://www.castor.org/. 2004 The ExoLab Group.

Cavaness, C (2003).Programming Jakarta Struts. Book
number 0-596-00328-5.

Digital Island Inc. Footprint content distribution service.
http://www.digitalisalnd.net/services/cd/footprint.shtml.

Dinesh, C., Seraphin C., and Khali A.Policy based Man-
agement of Content Distribution Networks. IBM
Thomas J Watson Research Centre, New York.
TechReport - March 2002.

Felipe Castel.Ontological Computing. Communications of
the ACM. Feb. 2002/Vol 45, No. 2

Johnson, Ralph(1991).Designing Reusable Classes. Jour-
nal of Objectg oriented programming. University of
Illinois.

Moore, B (2001).Policy Core Information Model - Version
1. Proceedings from IETF RFC 3060, 2001.

O’Reilly - MVC arch. (2003). Model-
View-Controller (MVC) Architecture.
http://www.indiawebdevelopers.com/

MVC (2003). Model View Controller.
http://www.exciton.cs.rice.edu/javaresources/DesignPatterns.

Parsons D, Rashid A, Speck A, Telea A(1999).A framework
for object oriented frameworks design. Proceedings
Technology of Object-Oriented Languages and Sys-
tems. IEEE Computer society: Los Alamoitos CA,
1999, 141-151.

Sleepycat Software systems, 2004Sleepycat Software Sys-
temsBerkeley XML DB http://www.sleepycat.com

W3C.org(2004).Extensible Markup Language - XML. The
W3C worldwide Consortium.

W3C.org(2004). HTTP - communication protocol.
http://www.w3.org/Protocols/. The W3C worldwide
Consortium.

W3C.org(2004). Simple Object Access Protocol (SOAP)
1.1 http://www.w3.org/TR/soap/ The W3C world-
wide Consortium.

Yang, Chu-Sing and Luo, Mon-Yen (2000). A Content
Placement and Management System for Distributed
Web-Server Systems.

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

454


