
DYNAMIC USER INTERFACES FOR SEMI-STRUCTURED
CONVERSATIONS

James E. Hanson, Prabir Nandi, Santhosh Kumaran
IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

Paul Foreman
IBM Software Group, Austin, TX, USA

Keywords: Software architecture and engineering, Computer-mediated communication, Interaction design

Abstract: The growing complexity of application-to-application interactions has motivated the development of an
architectural model with first-class support for multi-step, stateful message exchanges—i.e.,
conversations—and a declarative means of specifying conversational protocols. In this paper, we extend this
architectural model to encompass UI-enabled devices, thereby enabling it to cover human-to-application
conversations as well. This permits either participant to be human-driven, automated, or anywhere in
between, without affecting the nature of the interaction or of the other participant. The UI-enabled
conversational model also reduces the difficulty of developing conversational applications, providing
significant benefits both for UI and for application developers. We describe the architecture of a UI-enabled
conversational system that supports a variety of user devices, and includes a means by which UI markup
may be automatically generated from the conversational protocols used. We go through a sample
application currently implemented using a commercially available application server, and further describe a
graphical tool for editing and testing conversational protocols, that significantly eases the protocol
development process.

1 INTRODUCTION

Increasingly, interactions between servers and
clients in the World Wide Web are taking the form
of conversations—i.e., multi-step, stateful, bilateral
(or multi-lateral), correlated sequences of messages
(for example, consider any mature e-commerce
storefront). The same is true of interactions between
applications in which no human is involved; and the
growth of Web Services seems likely to accelerate
this trend. This in turn led us to propose in (Hanson
et al., 2002) an explicit conversational model for
application interaction.

The present paper builds on that approach,
extending the model to cases in which one (or both)
of the “applications” is a human operating a UI-
enabled device such a browser, PDA, or Web phone.
In doing so, we show that a single model of
interactions can be used across an extremely wide
variety of applications from human-facing to fully
automated, as well as hybrid cases in between.

We will be taking full advantage of the semi-
structured nature of conversations specified in the
model. By this is meant the feature that
conversations frequently follow common, reusable
patterns which can be expressed in terms of formal
structural constraints on message exchange, but the
number and character of these patterns is not known
a priori; in fact, the patterns are continually
evolving.

It was argued in (Hanson et al., 2002) that the
use of explicitly declared conversational structures is
a key enabler for complex application-to-application
interactions. As we will see, it is also a powerful tool
for simplifying the creation of markup for complex
application-to-human interactions. Thus an
additional benefit of the conversational model of
interactions, and the architecture and programming
model that it implies, is that it simplifies the
development and maintenance of interactive Web
sites. Since patterns of message exchange are first-
class entities, they can be added, modified, replaced,
etc., as a single unit.

48
E. Hanson J., Nandi P., Kumaran S. and Foreman P. (2005).
DYNAMIC USER INTERFACES FOR SEMI-STRUCTURED CONVERSATIONS.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 48-58
DOI: 10.5220/0002519100480058
Copyright c© SciTePress

In the next section, we review the conversational
model in which the UI is operating. Section 3 then
turns to the UI architecture itself. In section 4, we
describe an example scenario we have implemented.
Subsequent sections draw relationships to other
work and conclude with a sketch of future work.

2 CONVERSATION MODEL

In this section, we briefly review the conversational
model of interacting applications. More detail may
be found in (Hanson et al., 2002).

2.1 Summary of the Architecture

The conversational model is a high-level
architecture appropriate for applications that carry
on multi-step, stateful interactions with other
applications. As shown in Figure 1, it consists in
essence of connected subsystems: a messaging
endpoint, a conversation management subsystem,
and decision logic. The messaging endpoint supports
the sending and receiving of messages using one or
another messaging protocol. The conversation
management subsystem takes care of conversational
session information and state information, and the
decision logic performs the remainder of the
processing necessary to drive the application
through the conversation. The only constraints we
make on the messaging endpoint and the decision
logic are that they must be able to interact with the
conversation management system in the specified
way; beyond that, they may be anything.

Decision
logic

Conversation
management

CPsApplication

m
es

sa
ge

s

Messaging
endpoint

by
te

s

de
cis

io
n

da
ta

Network

Figure 1: High-level view of the application architecture
embodying the conversational model, (Only one of the

conversing applications is shown.)

The conversation management subsystem is at
base an engine for executing conversational
protocols (cf. below). Each inbound message
received at the messaging endpoint is passed into the
conversation management subsystem. There, the
conversation to which it applies is identified, it is
validated against the currently-executing
conversational protocol for that conversation, the
protocol’s state is updated as appropriate, and the
relevant data is unpacked from the message. The
new conversational state and the data unpacked from

the message (which in Figure 1 are together referred
to as "decision data") are then passed on to the
decision logic for processing. For example, at some
point in a bilateral negotiation, the decision data
might give the conversational state as “counter-offer
pending” and, as the data unpacked from the
message, provide the contents of the counteroffer
just received.

The inverse of this sequence is performed for
outbound messages. The decision logic passes to the
conversation management component an identifier
of the decision made and any additional data
associated with that decision (e.g., in response to the
“counter-offer pending” input above, the decision
logic might pass in “accept”, or might pass in “make
counter-offer” along with the contents of the new,
outgoing counter-counter-offer). The conversation
management subsystem validates these inputs from
the decision logic against the conversational
protocol, updates the conversational state, generates
an appropriate message, and passes the message on
to the messaging endpoint for delivery.

In this way, the decision logic is presented with
an orderly sequence of validated inbound decision
data that conforms to the conversational protocol in
use (and, where an inbound message violates the
protocol, it supplies a detailed context for error
diagnosis and recovery); and it provides, for the
decision logic developer, a rich, general-purpose
interface for use in all conversations.

The notable feature of this architecture is that it
separates the management of the interactions from
the operation of the decision logic. This has a
number of attractive properties, including:
• It factors out the conversation protocol support
(which must be consistent between the conversing
parties) from the agent’s own internal business
process (which will be different for each party).
• It permits an open-ended variety of decision-
logic architectures to be plugged in. Thus the
application developer can plug in virtually any kind
of decision logic: e.g., workflow system, a software
agent, or, as we describe in this paper, a person with
a GUI. This is particularly attractive from the
emerging Web Services/Service Oriented
Architecture (SOA) perspective. Complex decision
logic can be expressed as a service and discovered
and plugged in dynamically to the conversation
support system at runtime.
• It enables significant advances in conversation
management, by means of meta-level conversational
protocols (for conversations about the state of the
conversation) to be treated in the same way as
ordinary protocols. Thus reconnecting after a failure,
resynchronizing, restarting after a pause, or handing
a conversation off to a third party are all just

DYNAMIC USER INTERFACES FOR SEMI-STRUCTURED CONVERSATIONS

49

instances of conversational interactions, needing no
special treatment.
• It promotes reuse of small, standardized
messages as the bottom-level speech-act elements
out of which complex interactions are assembled.
(The conversational model does not of course
prevent developers from taking a kitchen-sink
approach, in which a single message carries with it a
great deal of information that would more naturally
be kept as conversational state; rather, it obviates the
necessity for it.)

2.2 Conversational Protocols

Conversational protocols (CPs) are declarative
specifications of message exchange sequences,
giving, for example, schemas of messages that the
conversing applications may send or receive at
different points in the conversation. CPs are
intentionally open-ended: that is, a given CP defines
a set of messages that may be exchanged, without
prescribing what messages will be exchanged. CPs
as we use them here draw inspiration from the Pi-
calculus (Milner, 1999) and from work in the
software agents community (e.g., Greaves and
Bradshaw, 1999).

One straightforward approach to CP
specification is to express them as state machines, in
which the states of the machine represent the
different states of the conversation, and the
transitions between states represent messages sent
by one or the other participant (cpXML, 2002). This
is the approach taken here.

Figure 2 shows an example of a conversational
protocol, the “Haggle” CP, in the form of a state-
chart diagram. In this CP, two participants (one
playing role “A”, the other “B”) exchange offers and
counteroffers until one or the other participant
accepts the current offer, or cancels the negotiation.
Execution of the CP begins in the state labelled
“<<initial>>”, and follows any sequence of the
transitions until one of the states labelled
“<<terminal>>” is reached. Transitions between
states represent messages sent by one or the other
participant, and are labelled “sender-role: message-
name” (labels are in boxes). The different message-
names are shorthand for detailed message schema
information, such as WSDL portType and operation
names (W3C, 2001) or URIs of XML Schema
instances, in the CP itself. The Haggle CP is used in
the scenario described in Section 4.

<<initial>>
Ready

CounterOffer
Open

Offer
Open

<<terminal>>
Negotiation
Complete

<<terminal>>
Negotiation
Cancelled

A: Offer
B: Offer

B: Cancel

B: Accept

A: Offer

A: Cancel

A: Accept

Figure 2: The Haggle CP.

Another key feature of cpXML, also illustrated in
Section 4, is nestability—i.e., the ability to assemble
complex protocols out of other, simpler, separately
specified protocols. This is done by means of a
special state type, the “in-child” state. When a CP
enters an in-child state, the current state of the
current CP is saved while another CP is loaded and
executed. The “parent” CP forms the context in
which the messages exchanged in the “child” CP are
interpreted.

3 DECISION LOGIC
ARCHITECTURE

The conversation support architecture extends
naturally to encompass human users participating on
one side of the conversation. Instead of being
processed automatically (e.g., by a node in a
workflow), the outputs of the conversation
management component are transformed into
markup for rendering on a human computing device.
Similarly, the user’s decisions (and attendant data)
are extracted from the user device and transformed
into decision-data inputs to the conversation
management subsystem. (Note that this seemingly
inverts the usual way of thinking about user devices:
we are treating them as part of the “back end”
decision logic subsystem.) The overall architecture
is as shown in Figure 3.

Inbound decision-data (from the conversation
management system) is transformed into appropriate
markup (HTML, WML, VoiceML etc.) for
rendering on the user-chosen device. Prompts at
decision points defined by CPs are transformed in
the same way. User supplied data is likewise
transformed into a message format readable by the
conversation support system.

The UI Controller provides the ability to plug-in
markup specific translation engines. When the

ICEIS 2005 - HUMAN-COMPUTER INTERACTION

50

conversation session is first established, the user
device is automatically detected and the appropriate
translation engine is selected. In addition the
corresponding device-specific presentation policy is
retrieved from the presentation policy repository.
The presentation policies contain mapping rules to
transform between the message schemas used in a
given CP and the particular markup to be used to
deal with those schemas.

HTML Translation
Engine

WML Translation
Engine

VoiceXML
Translation Engine

“Decisions”

Presentation
Policy

Repository

CP
Repository

UI
Controller

markup

markup

markup

CP
HTML
Policy

WML
Policy

Conv.
Mgmt.

Msg.
Endpt.

Figure 3: High-level architecture of the UI-enabled
decision logic.

Separating the rendering of content (presentation
policies) from its production (conversational
protocols) allows the capability of extending support
for additional devices simply by using the device
specific presentation policy.

The structure defined by a CP, as executed by
the conversation management subsystem, is
invaluable for the generation of the markup. The
current state of the CP gives the current
conversational context. That context determines
whether information is to be gathered from the user,
and, if so, what the nature of that information is.
Thus, for example, when the conversation enters a
state in which the user may or must send a message,
the transitions from that state give the names of the
alternative messages that may be sent, and the
schema associated with each transition gives the
message-content that must be supplied by the user. It
is straightforward to map the set of alternative
message-names to a UI list-selection element; and
possible (though not always aesthetically pleasing)
to map the message-contents to a form to be filled
out.

3.1 Presentation Policies

As discussed in the previous section, Presentation
Policies contain the logic of translating between CP
messages and its device specific markup. This

approach is made practical by the semi-structured
nature of the conversation, That is, for any given CP,
there is a predefined and—usually—relatively small
set of messages for which a presentation policy is
needed to supply transformation information. It also
helps that the use of CPs encourages the use of
simple, reusable messages, for which the same
transformation information may be reused.

There are 3 types of translation encoded in a
presentation policy:
• mapping received messages to the markup
• markup to generate form screens to gather user

data
• mapping and transforming user data from the

screens to the message formats defined in the
CPs

The logic of using screen real-estate optimally is
a key function of the presentation policies, second of
course, to its message translation chores. But a key
feature of the system is the ability for the UI to
operate in cases where no special presentation policy
is available. This means that the minimum
information required to carry on a human-to-
application conversation is the CP or CPs used by
the application—which are likely to be available
from the application itself. In our current
implementation, the default UI is automatically
generated in the translation engines, which provide a
default mapping if a presentation policy is
unspecified. This default mapping is workable, if
somewhat deficient in aesthetics and convenience,
especially in cases where the messages are relatively
small and simple. Further sophistication, for
example, to enforce corporate branding,
guaranteeing a consistent look-and-feel, etc., is
accomplished by overriding the default rendering.

Just like CPs, presentation policies may be
downloaded anytime, from anywhere. Conversation
partners may supply their own PPs for look-and-feel
customization, but user can also reuse the same PPs
across different partners.

3.2 Architecture Variations

The architecture illustrated in the previous section
can be adopted in a variety of ways.

Thin Client. In this case the conversation
support and the UI Controller live on a server, with
which the user devices communicate in the usual
way. The server might, for example, be operated by
an ISP, and conversation-support services might be
part of its value-add for customers. The ISP would
take care of downloading CPs and PPs as needed, as
well as managing conversational state for its users,
as shown in Figure 4.

DYNAMIC USER INTERFACES FOR SEMI-STRUCTURED CONVERSATIONS

51

Users subscribe to services offered by the ISP
and interact via ordinary web browsers. ISP’s can
maintain preferred PP’s as part of the user’s profile.
The ISP can also embed the conversation-UI as a
frame in a partner-supplied page. This would be
appealing to retail partners, since they could reuse
their storefront & navigation templates. The served
page could support automatic updates using
JavaScript with META_REFRESH (refresh enabled
in an invisible frame) or invisible applet with live
connect etc. Alternatively, sophisticated pub-sub
infrastructure can be employed to push received
messages to the user.

UI
Controller

Conv.
Mgmt.

PPs CPs

ISP

Msg.
Endpt.

Conv.
Mgmt.

CPs

Retail Store

Msg.
Endpt.

Decn.
Logic

Conv.
Mgmt.

CPs

Telco

Msg.
Endpt.

Decn.
Logic

Conv.
Mgmt.

CPs

Bank

Msg.
Endpt.

Decn.
Logic

Figure 4: Thin client. Connections between the ISP and
the providers’ messaging endpoints on the right, and

between the ISP and the user devices on the left, are over
the network.

Thick Client. In this configuration, conversation
support and the UI Controller are implemented as
plug-in on the user device. Unlike the thin client
configuration, the UI Controller is configured with a
single markup translation engine: for example,
simple Web browsers only require support for
HTML markup translation. Thick clients seem more
practical in managed environments where the
necessary plugins can be effectively distributed on
all user devices. Users download CPs and PPs of
their choice from repositories maintained by their
enterprise, or from individual department web sites.
Users on the WWW, similarly, can download CPs
and PPs from anywhere and have the freedom to do
business with services providers of their choice.
Intelligence can be added to the UI Controller,
making it an agent rather than just a UI-generator.
e.g., pre-fill mailing address. This permits single-
point change (to mailing address) regardless of
conversational partner. The thick client model,
introduces a paradigm shift of sorts, moving
transaction power closer to the user and making it
possible for them to influence the way e-business
transactions are organized and delivered, though at

the cost of requiring more complex functionality at
the user’s end.

Collapsed Conversation Management. It is
also of course possible for the conversation
management to be hosted by the other party—e.g.,
the bank, Telco, etc., with which the user is
conversing. This can be done in the obvious way, in
which the user’s conversation management system is
connected directly to that of the service provider
(thereby cutting out the intermediate step of
messaging); or, alternatively, it is straightforward to
implement a hybrid conversation management
system that can simultaneously play both roles—i.e.,
that exchanges decision data with both sides of the
conversation, foregoing the messaging endpoints
entirely. This architecture is possibly closer to
current practice than either the thin client or thick
client (cf. Section 5). Because of that, it may be the
easiest architecture to deploy initially. Note,
however, that it realizes none of the advantages of
reusability and user-customizability that the thin or
thick clients provide.

Hybrid human-agent systems. There is a large
body of research on software agents that specialize
in user assistance, for which the natural place is as
part of a hybrid decision logic component
containing, as its human-facing part, the UI
Controller. For example, (Hanson and Milosevic,
2003) discusses a hybrid system for CP-governed
contract negotiation that contains automated
validation of the contract’s formulation. Other
simple enhancements include pre-filling recognized
fields in forms with values taken from a database of
user preferences or from a history of previous user
input; just-in-time search and download of CPs and
PPs; etc. Because the ISP is inherently motivated to
provide value-add services to its subscribers, the
thin-client implementation in particular would seem
to offer a promising path for the evolution of such
enhancements. Furthermore, since the thin client and
thick client implementations are under the control of
the user (as opposed to being provided by the other
party in the conversation), there is significantly less
concern over privacy of user information.

4 PROTOTYPE
IMPLEMENTATION

In this section, we describe a prototype
implementation of the UI architecture, into which an
example application has been implemented:
obtaining a home loan.

The prototype uses a modified version of the
Thin Client implementation, as shown in Figure 5.
The Conversation Support for Web Services toolkit

ICEIS 2005 - HUMAN-COMPUTER INTERACTION

52

(CS-WS, 2002), available from IBM alphaWorks,
provides the conversation management runtime. It
uses two machines for the two sides of the
conversation, each running IBM's WebSphere
Application Server (WebSphere, 2004). The two
vertical lines represent firewalls. One of the
machines is deployed in the company's DMZ (De-
militarized Zone), processing the customer side of
the conversation, while the other is deployed in the
intranet connecting the mortgage application's
business logic. The UI Controller is implemented as
a servlet and deployed as a web application on the
customer-side server. Customers use simple Web
Browsers and HTTP to communicate with the
servlet engine. Connectivity between the two
conversation support machines is achieved with
Web Services protocols.

UI
Controller
(Servlet)

Conv.
Mgmt

(CS-WS).

PPs CPs

Customer-side server
(IBM WebSphere)

Web
Services

Conv.
Mgmt.

(CS-WS)

CPs

Web
Services

Mortgage
Application

Broker-side server
(IBM WebSphere)

CUSTOMERS

HTTP

SOAP/JM
S

Figure 5: Deployment of the sample application

4.1 The scenario

A customer wants to obtain a loan for the purchase
of a new home. The customer initiates a
conversation with a mortgage broker, and
immediately sees a form to fill out, with fields for
name, address, etc.

What has happened is that, upon establishing the
conversation, the conversation managers for both the
customer and the broker loaded the first CP they will
use.

Figure 6 shows the set of CPs that will come into
play in the scenario and their parent-child
relationships; the CPs themselves will be described
in detail as we encounter them. The Mortgage Loan
CP is the protocol describing the entire process. It
makes use of the Qualify CP to establish whether the
customer qualifies for a loan, and the Best Rate CP
to settle on the parameters of the loan (here
represented by only two parameters, the term and the
interest rate). The Best Rate CP, in turn, makes use
of the Negotiate Rate CP to settle on the interest
rate; and the Negotiate Rate CP uses the Haggle CP
of Figure 2 for the actual exchange of offers.

MortgageLoan

BestRateQualifying

Haggle

NegotiateRate

Figure 6: Conversational protocols used in the scenario.

<<initial>>
Ready

<<in-child>>
Qualifying

<<in-child>>
BestRate

Hold ID
30 days

Lock &
Wait

<<terminal>>
Loan

Complete

<<terminal>>
Loan

Rejected

C: ApplicationForm

<<timeout>>

<<child-return>>
Accept

C: Renegotiate

<<child-return>>
Not Qualified

<<child-return>>
Cancel

<<child-return>>
Qualified

C: ExecuteLoan

<<child-return>>
Hold

<<timeout>>

Figure 7: The MortgageLoan CP

In Figure 7 we see the MortgageLoan CP. The
two roles for this and the following CPs are B and C,
which are always played by the broker and the
customer, respectively. Note also the two states
labelled “<<in-child>>”: when the conversation
reaches these states, the given child CP is loaded and
executed, while the parent waits. When the
execution of the child CP is done, the parent CP is
reactivated, and, based on the terminal state reached
in the child CP, the appropriate “<<child-return>>”
transition is taken.

As Figure 7 shows, the transition from the
Mortgage Loan’s initial state corresponds to an
ApplicationForm message sent by the consumer. In
our scenario, this has caused the customer-side
conversation manager to send a decision request to
its UI controller, which in turn has generated the
form and sent it to the customer’s browser.

The customer submits the form to the customer-
side server, which (via the UI controller) translates it
into decision data and submits it to its conversation
manager. The conversation manager then updates
the CP’s state to Qualifying, which in turn causes it

DYNAMIC USER INTERFACES FOR SEMI-STRUCTURED CONVERSATIONS

53

to load the Qualifying CP, shown in Figure 8, as a
child CP.

<<initial>>
Start

Check
Credit

<<terminal>>
Not Qualified

<<terminal>>
Qualified

Debts

B: Check Credit

B: Bad

B: Good

C: High C: Low

Figure 8: The Qualifying CP, version 1.

As specified, the broker sends a message to the
consumer, indicating that a credit check is in
progress. Note that the credit check itself is nowhere
evident in the CP. Thus, the way in which the broker
does the credit check (or even whether the broker
does it at all) is invisible to the customer, as it
should be.

<<initial>>
Start

Checking
Credit

<<terminal>>
Not Qualified

<<terminal>>
Qualified

Debts

B: Check Credit

B: Bad

C: High C: LowB: Good

Figure 9: The Qualifying CP, version 2.

Having obtained the results of the credit check,
the broker communicates them to the consumer by
means sending either “Good” or “Bad” message.
The consumer-side server converts this to markup
for the customer’s browser. As shown in Figure 8,
the “Good” message also triggers a query for the
customer to answer: is the customer’s debt high or
low? As per the presentation policy associated with
the Qualifying CP, this shows up in the browser as a
question, followed by a user-input area pre-filled
with the options “High” and “Low”. The user selects
one of the options, which drives the CP to one of its
terminal states.

<<initial>>
Start

<<in-child>>
Negotiate

Rate

<<terminal>>
Hold

<<terminal>>
Cancel

<<terminal>>
Accept

Select
term

<<child-return>>
Accept

<<child-return>>
Reject

C: 15Term
C: 30Term

C: Amount Request

<<child-return>>
Change term

C: Cancel

Figure 10: The BestRate CP.

One of the advantages of having a separate CP
for the qualification phase is that it can be easily
replaced with a new version. E.g., suppose that the
broker decides to replace the Qualifying CP of
Figure 8 with the version shown in Figure 9. For
each server, this can be done simply by replacing the
CP file; or, alternatively, by modifying, in the parent
CP (Mortgage Loan), the URI for the child CP to
load in the “Qualifying” state. The broker-side
server can communicate this change to the customer-
side server at any time prior to the execution of the
Qualifying CP, for example by using a meta-level
CP. Note also that the substitution is particularly
simple in this case, since the messages used (and,
therefore, the presentation policy needed to generate
and to parse the markup) are the same for both
versions.

<<initial>>
Start

<<in-child>>
Haggle

<<terminal>>
Change Term

<<terminal>>
Cancel

<<terminal>>
Accept

Awaiting
Lender Rate

B: Obtaining rate

Option to
change term<<child-return>>

Negotiation
Complete

<<child-return>>
Negotiation Cancelled

C: No

B: Initial offer

C: Yes

Figure 11: The NegotiateRate CP.

ICEIS 2005 - HUMAN-COMPUTER INTERACTION

54

Figure 12: Screenshot of the application in action. The conversation is in state “Offer Open” of the Haggle CP (cf. Fig. 2),
with the customer playing role B. The Message History column keeps a running commentary of messages exchanged.

Once the broker has decided to proceed with
giving the customer a loan, they enter the BestRate
CP, shown in Figure 10. In this CP, the customer
names an amount for the loan, and then selects a
term. (Note that a pair of parallel transitions labelled
“C: 15Term” and “C: 30Term” are shown in a single
box with a single arrow.) Once the term is selected,
the broker and customer load the NegotiateRate CP,
shown in Figure 11. This CP, in turn, loads the
Haggle CP of Figure 2.

At the same time as it loads the NegotiateRate
CP, the broker starts a backend process that
negotiates with several lenders to determine the best
rate available for that term. This conversation
happens on the side and the customer is never aware
of it; all the customer sees is a message saying that
the broker is obtaining a rate. This gives the broker
more bargaining power by hiding the lender
negotiations from the customer. Each lender enters
into a negotiation with the broker using the Haggle
CP to make offers and counter offers over rates.
Once the best rate is collected, the broker resumes
the conversation with the customer and provides a
rate.

At this point, the customer and broker enter into
a negotiation using the Haggle CP, with the
customer playing role A and the broker playing role
B. In our scenario, the customer and broker at this
point do not come to an agreement on rate and the
conversation is suspended while the customer seeks
other offers.

When the customer suspends the conversation,
the customer-side server stores the conversation’s
state information, including the conversation IDs,
the CPs in use, the current state and role played by
the consumer of each CP, and the history of the
messages exchanged. (In the present
implementation, the broker does not suspend its side
of the conversation, but leaves it “live”; however
there is no impediment to having the broker suspend
the conversation as well.) Later, when the customer
reconnects with the customer-side server, he is
offered the option of resuming a suspended
conversation or starting a new one. If the customer
chooses the first option, the stored conversation state
information is reloaded into the conversation
management subsystem, and the customer and
broker resume where they left off.

DYNAMIC USER INTERFACES FOR SEMI-STRUCTURED CONVERSATIONS

55

The customer returns to the conversation after
two days have passed and renegotiates with the
broker. This time the customer logs in and sees that
the Best Rate CP has been modified: in parallel with
the transitions for 15 and 30 year terms, there is a
new transition labelled “C: 20 Term”, corresponding
to a 20 year term. The customer decides to select this
new term and restarts the negotiation. The broker
has also added a new lender to his list with very
competitive rates and this lender is able to come up
with a rate that allows the broker to present an offer
that the customer accepts. The customer signs a
lock with the broker for 30 days and leaves the
conversation.

4.2 The User Experience

Figure 12 shows a screenshot of the application in
action, at the point in the scenario when the broker
and customer are negotiating the details of the loan.
The screenshot shows what would be displayed in
the customer’s browser. The conversation is in the
Haggle CP, in the “B’s Offer Pending” state—i.e., it
is the customer’s turn either to make a new
counteroffer, to cancel the negotiation, or to accept
the broker’s offer. These three options, as defined by
the transitions from the current CP state, are
presented to the customer as three exclusive options.
The customer must decide which option to choose,
fill in the data associated with that choice, and click
“Send”. For example, to make a counteroffer, the
customer enters values for “Counter Rate” and
“Counter Points”, selects the appropriate button to
indicate whether he wants to assert that this is his
final offer, and then clicks the “Send” button
immediately below.

This figure illustrates the user’s experience
throughout the conversation. Each time the
conversation reaches a decision point for the
consumer—that is, each time the consumer has the
opportunity for sending a message—the UI
controller running on the customer-side server
generates markup similar to that shown in Figure 12,
in which the options open to the customer, which are
determined by the current state of the CP being
executed, are presented in the form of a set of
mutually exclusive options, optionally with
additional parameters. The user determines which
option he wishes to choose, fills in the parameters
and clicks the “Send” button for that option.

Running down the right side of Figure 12 is the
history of the conversation. This is automatically
updated every time the state changes. In each box is
the name of the message that was sent (as given by
the CP), and the values of the associated parameters.
Note that the history shows the messages sent by
both the customer and the broker.

The message history and the user input area are
framed by the Agiliform logo and a simulated
navigation bar. Agiliform is the name for this
project, chosen by the IBM “ExtremeBlue” team
that made it a reality. In practice, a vendor or ISP
would supply markup for these areas, thus
preserving the vendor’s brand identity, navigation,
etc.

In an earlier prototype, we also implemented a
real-time graphical display of the stack of CPs
currently in use (from parent to child to grandchild,
etc.), and the state-transition graphs of each CP, with
the current state highlighted. This was extremely
useful in debugging, but was felt to be too complex
to expose to the average user.

Figure 13: Screenshot of the CP authoring tool. The Qualify CP is being edited

ICEIS 2005 - HUMAN-COMPUTER INTERACTION

56

Figure 14: Screenshot of the CP authoring tool during a test of the Qualify CP. On the left is the window for the broker; on
the right is that for the customer.

4.3 CP Authoring and Testing

In addition to the sample application, the Agiliform
team created a CP authoring and testing tool. With
the tool, protocol developers may create and modify
CPs graphically by drawing their state-transition
diagrams and filling in the necessary parameters on
the states and transitions. The tool both reads and
generates cpXML files; the CPs so generated are
ready for deployment on the server. Figure 13 shows
a portion of a screenshot of the authoring tool, with
the Qualify CP loaded.

The authoring tool also has a testing facility.
This permits the CP developer to manually play both
sides of the conversation, and watch as the decisions
of both parties exercised the CP through its states. A
screenshot of such a test is shown in Figure 14.
Here, the Qualify CP is being tested, and the
conversation is at the point where the customer must
specify whether he has a low or high amount of debt.

5 RELATED WORK

Most of the conversation-related work in the UI field
is concerned with natural language processing and
speech recognition techniques embedded in the UI.
Thus a “conversational UI” is frequently understood
to be a voice-activated UI, providing a mapping
between the human voice and text (W3C, 1998).
This work forms the core technology on which one
of the translation engines plugged into the UI
controller is based (cf. Section 3.1) and therefore is a
powerful enhancement to the system we discussed in
this paper; but is of course not to be confused with
the notion of conversation used here.

The Struts framework (Apache.org, 2004) uses
an XML configuration file to specify page sequences
and the data shared and/or transferred across pages.
There are also some browser-based products that
drive interactions with a user using a decision script
(Vanguard, 2003). Their applicability is primarily in
the area of providing customer support. The script
runs on the server and guides the customer through
the troubleshooting process. These are in some
important respects similar to the Collapsed
Conversation Management architecture described in
Section 3.2.

There is an extensive body of work on model-
based UI development in which a high level
specification language is used to describe the
interface design. This specification would then be
automatically or semi automatically translated to
platform specific executable code or interpreted at
runtime to generate the appropriate interface. This
work may be usefully applied to improve the quality
of the automatically generated UIs used in cases
where a presentation policy has not been specified.
A comprehensive overview of the architectural
elements and their evolution within the UI
community is detailed in (Szekely, 1996).
Conversational protocols could provide the task
and/or the domain model required for such tools and
create highly sophisticated presentation policies.

6 CONCLUSION AND FUTURE
WORK

In this paper we have described a way in which
humans operating UI-enabled devices can be
integrated into a world of application-to-application
conversations. This integration hinges on a model of

DYNAMIC USER INTERFACES FOR SEMI-STRUCTURED CONVERSATIONS

57

application interactions in which conversations
follow semi-structured, nameable, explicitly
described protocols. As a consequence of this
integration, applications of all types (human-
operated, wholly automated, hybrid) may coexist as
peers in the same overall system.

This simplifies the job of the back-end decision
logic developer, since he can focus on the actual
decision-making logic without being concerned with
whether the user of the application is a human or
another application.

It also simplifies the job of the UI programmer.
In the CP authoring tool, we have seen an indication
of the degree to which programming of complex
interactions is simplified by the use of the
conversational architecture. Multi-step stateful
message exchanges can be designed with great ease
using a simple graphical tool, tested immediately,
and deployed effortlessly. The Conversation
Protocol Builder can be easily integrated with one or
other Model-based UI tools (e.g., Paterno, 2002) to
automate the process of generating highly
sophisticated , multi-modal UI to drive the human
end of the conversation.

These two observations suggest that using the
conversational model can significantly reduce the
difficulty of developing even very complex Web
applications, including both the UI and the back-end
decision logic.

We close with a sketch of a possible direction for
future work. Businesses providing manual user
support typically tape interactions for later review.
These audio records have proven to be extremely
useful for training customer support personnel,
determining customer and/or market demands,
tracking customer relationships, etc. However, the
cost and difficulty of extracting such information
from the raw audio data puts it out of the reach of
many small businesses. The conversation-aware user
interfaces described in this paper, in addition to
providing a viable means of automating user-facing
operations, allows for easy storage, retrieval, and
processing of past conversations. In addition to the
messages themselves, conversation histories giving
the paths that actual conversations take among the
states of the CPs they use are particularly useful for
this purpose. For example, in the mortgage loan
application, the broker can use standard statistical
tools to discover where (i.e., in which CP state)
negotiations break down most frequently, and in
what circumstances (e.g., is the rate too high?).
Corrective measures can then be adopted.
Developing innovative ways to store and analyze
conversation data will be one of our major research
directions for the future.

ACKNOWLEDGEMENTS

The authors would like to gratefully acknowledge
the contributions of the IBM ExtremeBlue team in
making the Agiliform application a reality: John
Baggett, Anand Srinivasan, Philip E Light, Razvan
Loghin, David Barnes, David P Greene, Ronald
Woan, and Vishwanath Narayan. The authors also
thank Yasodhar Patnaik and Terry Heath for their
work on an earlier version of this paper.

REFERENCES

Hanson, J., Nandi, P., and Levine, D., 2002. Conversation-
enabled Web Services for Agents and E-business, in
Proc. 3rd Intl. Conference on Internet Computing (IC-
02), CSREA Press, pp.791-796.

Milner, R, 1999. Communicating and Mobile Systems: the
pi-calculus, Cambridge Press, Cambridge, UK.

Greaves, M., Bradshaw, J. M., (eds.), 1999. Proc.
Autonomous Agents '99 Workshop on Specifying and
Implementing Conversation Policies.

cpXML, 2002. Conversation Policy XML,
www.research.ibm.com/convsupport/papers/cpXML-
v1.htm

W3C World Wide Web Consortium, Web Services
Description Language (WSDL) 1.1, 2001.
www.w3.org/TR/wsdl

Hanson, J., and Z. Milosevic, Z., 2003. Conversation-
oriented Protocols for Contract Negotiations, in Proc.
7th IEEE Intl.Enterprise Distributed Object
Computing Conference (EDOC-2003), IEEE Press.

CS-WS, 2002. Conversation Support for Web services,
www.alphaworks.ibm.com/tech/cs-ws

WebSphere Application Server homepage, IBM
Corporation, 2004.
www.ibm.com/software/webservers/appserv/was

The W3C Voice Browser Workshop
www.w3.org/Voice/1998/Workshop/papers.html

Apache.org, 2004. Jakarta Struts Framework,
jakarta.apache.org/struts/

Vanguard Corporation, Smart Servers,
www.vanguardsw.com/DecisionScript/SmartServers.h
tm

Szekely, P., 1996. Retrospective and Challenges for
Model-Based Interface Development,
www.idi.ntnu.no/emner/tdt12/szekely-retrospective-
CADUI96.pdf

Paterno, F. and Santoro, C., 2002. One Model, Many
Interfaces, giove.cnuce.cnr.it/teresa/pdf/Paterno-
CADUI2002.pdf

ICEIS 2005 - HUMAN-COMPUTER INTERACTION

58

