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Abstract: In this paper, a method to evaluate queries in document databases is proposed. The main idea of this method 
is a new top-down algorithm for tree-inclusion. In fact, a path-oriented query can be considered as a pattern 
tree while an XML document can be considered as a target tree. To evaluate a query S against a document 
T, we will check whether S is included in T. For a query S, our algorithm needs O(|T|⋅height(S)) time and no 
extra space to check the containment of S in document T, where |T| stands for the number of nodes in T and 
height(S) for the height of S. Especially, the signature technique can be integrated into a top-down tree 
inclusion to cut off useless subtree checkings as early as possible. 

1 INTRODUCTION 

In query languages proposed for XML, and even 
more generic SGML query languages, path-oriented 
queries play a prominent role. By “path-oriented” 
we mean queries that are based on the path 
expressions including element tags, attributes, and 
key words. A lot of work has been done on this issue 
(GMD, 1992) (C. Zhang , et al., 2001) (INRIA). 
However, all the methods proposed fail to recognize 
that the evaluation of a path-oriented query is in 
essence a tree-inclusion problem. For instance, in 
(C. Zhang , et al., 2001), a method was proposed to 
handle the so-called containment queries, which can 
be considered as a special case of the generic path-
oriented queries. The main idea behind it is the 
inverted indexes, by means of which each element 
(or a text word) is associated with a set of triples: 
(docno, label, level), where docno is the document 
identifier, label is used to indicate the position of an 
element and to check the containment relationship 
between elements or between an element and a text 
word, and level is the level of an element (or a text 
word) in a document tree. This method works well 
for single word checkings. However, in the case that 
a query is a non-trivial tree, its theoretic time 
complexity is O(|T||s|), where |T| and |S| represent the 
numbers of nodes in the document tree T and in the 
query tree S, respectively. 

In fact, much research has been conducted on the 
tree-inclusion problem in the theory research 
community, such as those reported in (W. Chen, 
1998) (INRIA) (H. Mannila et al., 1990) (Thorsten 
Richter , 1997). All the methods focus, however, on 
the bottom-up strategies to get optimal computa-
tional complexities, not suitable for database 
environment since the algorithms proposed assume 
that both the target tree (or say, the document tree) 
and the pattern tree (or say, the query tree) can be 
accommodated completely in main memory. It is not 
the case of database applications. In this paper, we 
propose a top-down algorithm that is of the time 
complexity comparable to the best bottom-up 
algorithm (W. Chen, 1998), but needs no extra space 
overhead. It works well in a database environment 
for the reason that it checks a target tree in a top-
down fashion and each time only part of the tree is 
manipulated. Especially, it can be combined with 
some kinds of heuristics such as signatures (C. 
Faloutsos , 1992) to speed-up query evaluation. 
The rest of the paper is organized as follows. In 
Section 2, we discuss the storage structure of XML 
documents in a relational database. In Section 3, we 
show that a path-oriented query can be represented 
as a tree-inclusion problem and discuss our top-
down strategy in great detail. Section 4 is devoted to 
the combination of the signature technique with the 
tree-inclusion. Finally, a short conclusion is set forth 
in Section 5.  

182
Chen Y. and Chen Y. (2005).
ON THE TREE INCLUSION AND QUERY EVALUATION IN DOCUMENT DATABASES.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 182-190
DOI: 10.5220/0002517201820190
Copyright c© SciTePress



2 STORAGE OF DOCUMENTS IN 
DBs 

An XML document is defined as having elements 
and attributes. Elements are always marked up with 
tags; and an element may be associated with several 
attributes to identify domain-specific information. 
XML processors (or parsers) guarantee that XML 
documents stored in databases follow tagging rules 
prescribed in XML or conform to a DTD (Document 
Type Descriptor). Generally, an XML document can 
be represented as a tree, and node types in the tree 
are of three kinds: Element, Attribute and Text. 
These node types are equivalent to the node types in 
XSL (World Wide Web Consortium , 1998) (World 
Wide Web Consortium, Extensible Style Language 
(XML) Working Draft , 1998) data model. There are 
some other less important node types such as 
comments, processing instructions, etc. The 
treatment of those node types is trivial and thus will 
not be discussed here. 
- Node type of Element has an element name as the 

label. Each Element node has zero or more child 
nodes. The type of each child node is of one of the 
three types (Element, Attribute and Text). 

- Node type of Attribute have an attribute name and 
an attribute value as a label. Attribute nodes have 
no child nodes. If there are multiple appearances 
of attributes, the order of the attributes will be 
ignored since the attribute order is normally not 
important for the document treatment. 

- Node type of Text have strings as labels. Text 
nodes have no child nodes, either.  

 
In Fig. 1(b), we show the tree structure representing 
the XML document shown in Fig. 1(a).  
To store documents in databases efficiently, the 
policies shown below should be followed: 
- (DTD independent) Database schemas to store 

XML documents should not depend on DTDs or 
element types. Any XML document can be 
manipulated, based on the predefined relations. 

- (no loss of structural information) The structure of 

a document stored in the database should be 
implemented in some way and can be 
manipulated. 

- (easy maintenance) The cost of the maintenance 
of the document structure should be kept 
minimum. Any update to a document will not 
cause the storage changes of other documents.    

 
To reach above goals, we decompose a document 
into a set of elements and distribute them over three 
relations named: Element, Text and Attribute, 
respectively. 
The relation Element has the following structure: 

{DocID: <integer>, ID: <integer>, Ename: 
<string>, firstChildID: <integer>, siblingID: 
<integer>, attributeID: <integer>}.  

where DocID represents the document identifier, 
ID represents the element identifier, 
 Ename is the element name (or tag name), 
 firstChildID is the pointer to the first child of an 

element, 
 siblingID is the pointer to the right sibling of an 

element, and 
 attributeID is the pointer to the first attribute of 

an element, which is stored in the relation 
Attribute.  

For example, the document given in Fig. 1(a) can be 
stored in this table as shown below. 
Element: 
docID ID Ename firstChildID siblingID attributeID 
1 1 hotel-room-reservation 2 * * 
1 2 name% 1 3 * 
1 3 location 4 11 * 
1 4 city-or-district% 2 5 * 
1 5 state% 3 6 * 
1 6 country% 4 7 * 
1 7 address 8 * * 
1 8 number% 5 9 * 
1 9 street% 6 10 * 
1 10 post-code% 7 * * 
1 11 type 12 14 * 
1 12 rooms% 8 13 * 
1 13 price% 9 * * 
1 14 reservation-time 15 * * 
1 15 from% 10 15 * 
1 16 to% 11 * * 

<hotel-room-reservation filecode=’1302’> 
 <name>Travel-lodge</name> 
 <location> 
  <city-or-district>Winnipeg</city-or-district> 
  <state>Manitoba</state> 
  <country>Canada</country> 
  <address> 
   <number>500</number> 
   <street>Portage Ave.</street> 
   <post-code>R3B 2E9</post-code> 
  </address> 
 </location> 
 <type> 
  <room>one-bed-room</room> 
  <price>$119.00</price> 
 </type> 
 <reservation-time> 
  <from>April 20, 2002</from> 
  <to>April 28, 2002</to> 
 </reservation> 
</hotel-room-reservation> 

(b) 

to 

April 28, 2002 

(a) 

Figure 1: A simple document and its tree structure

 City-or-
district 

hotel-room-reservation 

filecode=”9302” 

name location 

country 

type Reservation-time 

state address rooms price from 

Canada One-bed- 
room

number street post-code Winnipeg Manitoba 

515 
Portage Ave. 

R3B 2E9 

Travel-lodge

$119.00 (a)
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In the relation Element, an element name suffixed 
with ‘%’ indicates that its first child is a text 
appearing in the relation Text. In addition, in the 
table, ‘*’ represents a null value.  
 
The relation Text has a simpler structure: 
 {DocID: <integer>, textID: <integer>, value: 
<string>}, where “textID” is for the identifiers of 
texts, which are used as the values of the 
corresponding elements in the original document. 
One should notice that a text takes always an 
element as the parent node. See the following table 
for illustration. 
 Text: 

docID textID value 

1 1 Travel-lodge 

1 2 Winnipeg 

1 3 Manitoba 

1 4 Canada 

1 5 500 

1 6 Portage Ave. 

1 7 R3B 2E9 

1 8 one-bed-room 

1 9 $119.00 

1 10 April 20, 2002 

1 11 April 28, 2002 

 
Finally, the relation Attribute has five data fields: 
 {DocID: <integer>, att-ID: <integer>, parentID: 

<integer>, att-name: <string>, att-value: <string>}. 
In the relation Text, we have parentID attribute used 
for the identifiers of elements (stored in relation 
“Element”), in which the corresponding attribute 
appears. The following table helps for a better 
understanding. 
 Attribute: 

docID att-ID parentID Att-name Att-value 

1 1 1 filecode 1302 

 
The method discussed above is quite different from 
that discussed in (J. Shanmugasundaram et al., 
1999), by means of which for each different DTD a 
different relational schema will be generated. It will 
obviously increase the heterogeneity of distributed 
document databases. Considering the web 
environment, an uniform structure for all the 
document databases distributed over the network 
will definitely benefit communication and evaluation 
of distributed queries. 

3 QUERY EVALUATION IN DBs 

In this section, we discuss the query evaluation in a 
document database. First, we show what is a path-

oriented query in 3.1. Then, we indicate that the 
evaluation of path-oriented queries is in essence a 
tree-inclusion problem, and propose a new top-down 
algorithm for this task in 3.2. 

3.1 Path-oriented queries 

Several path-oriented language such as XQL (J. 
Robie, et al., 1998) and XML- QL (A. Deutsch , et 
al., 1989)  have been proposed to manipulate tree-
like XML documents. XQL is a natural extension to 
the XSL pattern syntax, providing a concise, 
understandable notation for pointing to specific 
elements and for searching nodes with particular 
characteristics. On the other hand, XML-QL has 
operations specific to data manipulation such as 
joins and supports transformations of XML data. 
XML-QL offers tree-browsing and tree-
transformation operators to extract parts of 
documents to build new documents. XQL separates 
transformation operation from the query language. 
To make a transformation, an XQL query is 
performed first, then the results of the XQL query 
are fed into XSL (World Wide Web Consortium, 
Extensible Style Language (XML) Working Draft , 
1998) to conduct transformation. 
An XQL query is represented by a line command 
which connects element types using path operators 
(‘/’ or ‘//’). ‘/’ is the child operator which selects 
from immediate child nodes. ‘//’ is the descendant 
operator which selects from arbitrary descendant 
nodes. In addition, symbol ‘@’ precedes attribute 
names. By using these notations, all paths of tree 
representation can be expressed by element types, 
attributes, ‘/’ and ‘@’. Exactly, a simple path can be 
described by the following Backus-Naur Form: 
<simple path> ::=<PathOP> <SimplePathUnit> | 

<PathOp> <SimplePathUnit> ‘@’ <AttName> 
<PathOp> ::= ‘/’ | ‘//’ 
<SimplePathUnit> ::= <ElementType> | <ElementType> 

<PathOp> <SimplePathUnit> 
The following is a simple path-oriented query: 
 /letter//body [para $contains$‘visited’], 
where /letter//body is a path and [para 
$contains$‘visited’] is a predicate, enquiring 
whether element “para” contains a word ‘visited’. 
Several paths can be jointed together using ‘∧’ to 
form a complex query as follows. 
/hotel-room-reservation/name ?x ∧ 
/hotel-room-reservation/location [city-or-district = 
‘Winnipeg’]∧ 
/hotel-room-reservation/location/address [street = ‘510 
Portage Ave.’]. 
This query will find the name of the hotel located in 
510 Portage Ave., Winnipeg.  
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3.2 Evaluation of Path-Oriented 
Queries as a Tree Inclusion 
Problem 

Both the documents and the queries can be 
considered as labeled trees and the evaluation of a 
path-oriented query can be thought of as a tree-
embedding problem. In the following, we first define 
the concept of tree embedding. Then, we show that 
to evaluate a query, we will check whether the tree 
representing a query is embedded in a document 
tree. 
Definition 1 (labeled tree) A tree is called a labeled 
tree if a function label from the nodes of the tree to 
some alphabet is given, or say each node in the tree 
is labeled.  
Obviously, an XML document can be represented as 
a tree with the internal nodes labeled with tags and 

the leaves labeled with texts; and a query shown 
above can also be represented as a labeled tree. 
Definition 2 (tree embedding) Let T1 and T2 be two 
labeled trees. A mapping M from the nodes of T2 to 
the nodes of T1 is an embedding of T2 into T1 if it 
preserves labels and ancestor-descendant 
relationship. That is, for all nodes u and v of T2, we 
require that 
 a) M(u) = M(v) if and only if u = v, 
 b) label(u) = label(M(u)), and 
 c) u is an ancestor of v in T2 if and only if M(u) is 

an ancestor of M(v) in T1. 
An embedding is root preserving if M(root(P)) = 
root(T). According to (Pekka Kilpelainen , et al. 
1995), restricting to root-preserving embedding does 
not lose generality. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Example 1. As an example, consider the trees: T and 
S shown in Fig. 2(a), representing the query shown 
discussed in 3.1 and the document shown in Fig. 
1(a), respectively. If a mapping as shown in Fig. 
2(b) can be determined, we’ll have a tree-embedding 
of the query tree into the document tree. In this case, 
we say that the query tree is included in the 
document tree. 
For the query evaluation purpose, we’ll return that 
document as one of the answers.  
In the following, we discuss a top-down algorithm 
for tree inclusion, whose computational complexities 
are comparable to any bottom-up methods for this 
problem. Especially, we can integrate the signature 
technique (C. Faloutsos , 1992) into a tree 
embedding to cut off useless subtree checking, 
which improves the efficiency significantly. 
Our algorithm is based on the following three 
observations: 

(1) Let r1 and r2 be the roots of T and S, respectively. 
If T includes S and label(r1) = label(r2), we must 
have a root preserving embedding. 
(2) Let T1, ..., and Tk be the subtrees of r1. Let S1, ..., 
and Sl be the subtrees of r2. If T includes S and 
label(r1) = label(r2), There must exist two sequences 
of integers: k1,..., kj and l1, ..., lj (j ≤ l) such that 

i
 

includes <
1−il

, ..., 
il
> (i = 1, ..., j), where <

1−il
, 

..., 
il
> represents a forest containing subtrees 

, ...,  and . (See Fig. 3  for illustration.) 

kT
S S S

S
1−il il(3) If T includes S, but label(r

S S
1) ≠ label(r2), there 

must exist an i such that Ti contains the whole S. 
 
 
 
 
 
 
 

 

Figure 2: Illustration for tree embedding

 City-or- 
district 

country 

hotel-room-reservation 

filecode=”9302” 

location type Reservation-timename 

state address rooms price from to 

number street post-code Winnipeg Manitoba 

Canada 

515 
Portage Ave. 

R3B 2E9 

One-bed- 
room

$119.00 April 28, 2002 April 28, 2002 

Travel-lodge 

T: S: hotel-room-reservation 

location name 

address City-or-district (a) 
?x 

street number 
Winnipeg 

515 Portage Ave. 

M(T.hotel-room-reservation) = S.hotel-room-reservation 
M(T.name) = S.name 
M(T.location) = S.location 

M(T.Winnipeg) = S.Winnipeg 
M(T.515) = S.515 
M(T.’Portage Ave.’) = S.’Portage Ave.’ 

M(T.Travel-lodge) = S.Travel-lodge 
M(T.city-or-district) = S.district 
M(T.address) = S.address 

(b) 

include r1 r2 

… … …

T: 

T k1 T kj T1 Tk 

… … …

S: 
include 

S l1 
S lj-1+1 S1 S lj = Sl 

Figure 3: Illustration for observation (2) 
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We notice that observation (1) and (3) hint a top-
down process to find any possible root-preserving 
subtree embeddings. However, to work according to 
observation (2), we will first check T1 against <S1, 
..., Sl> to find an i (I ≤ l) such that T1 includes <S1, 
..., Si>. If i = 0, it shows that T1 does not include any 
subtree in <S1, ..., Sl>. Next, we will check T2 against 
<Si+1, ..., Sl>, and so on. This process can be done in 
a bottom-up way as discussed below. 
Let T11 , ..., T1j be the subtrees of T1’s root. To find 
an i such that T1 includes <S1, ..., Si>, the only way is 
to check T1k in turn against <

1−il
, ..., SS l > (k = 1, ..., 

j, l0 = 0). It is the same process as indicated by 
observation (2). That is, if there exists an i such that 
T1 includes <S1, ..., Si>, then there must exist two 
sequences of integers: c1, ..., cs and  l1, ..., ls (s ≤ i) 
such that 

hcT1  includes <
1−hl

S , ..., 
hl

> (h = 1, ..., 
s, l

S
0 = 0). The same analysis applies to the subtrees 

of the root of any 
hcT1 . Therefore, it is a recursive 

process and in this process, the node checking is 
actually done from bottom to top. However, this 
process is interleaved with a top-down process. That 
is, whenever a subtree in T is to be checked against a 
single Sj, the top-down process will be invoked to 
find a possible root-preserving subtree inclusion as 
illustrated in Fig. 4. 
 
 
 
 
 
 
 
 
 

 
In Fig. 4, we show how T1 is checked against <S1, ..., 
Sl>. In the figure, 1(k) stands for a sequence 
containing k 1s, and then )(1 kT  represents the left-
most subtree of )1(1 −kT ’s root. For instance, )3(1

T  
(i.e., T111) is the left-most subtree of  the root of 

)2(1
 (i.e., TT 11). When we check T1 against <S1, ..., 

Sl>, we will look for an i such that |T1| ≥ |<S1, ..., 
Si>| but |T1| < |<S1, ..., Si+1>|. Then, we will check 

)2(1
 against <ST 1, ..., Si>. When we do this, the same 

method applies. We repeat this process until we 
meet )(1 k  for some k such that |ST 1| ≤ | | < |<S)(1 kT 1, 
S2>|. In this case, we will check  against S)(1 kT 1 in a 
top-down fashion as discussed above. If  
includes S

)(1 kT
1, we will try to check whether 

21 )1( −kT , the 
direct right sibling subtree of , includes <S)(1 kT 2, ..., 
Sj> for some j such that |<S2, ..., Sj>| ≤ |

21 )1( −kT | < 
|<S2, ..., Sj+1>|. Otherwise, we will check whether 

21 )1( −  includes <SkT 1, ..., Sh> for some h such that 
|<S1, ..., Sh>| ≤ |

21 )1( −kT | < |<S1, ..., Sh+1>|. Obviously, 
the whole computation is a top-down process with 
the bottom-up checkings interleaved.  Concretely, 

the top-down and the bottom-up processes are mixed 
as follows. 
- Let T’ be a subtree of T. If there exists an i (> 1) 

such that |<S1, ..., Si>| ≤ |T’| < |<S1, ..., Si+1>|, we 
will check T’ against <S1, ..., Si> in a bottom-up 
way. That is, we will first check whether the 
subtrees of the root of T’ include <S1, ..., Si>. 

- If |<S1>| ≤ |T’| < |<S1, S2>|, we will check T’ 
against S1 top-down, by which we will first 
compare the root of T’ and the root of S1. 

Since the top-down and bottom-up processes are 
mixed, we need to find a way to distinguish them. 
Consider the recursive call to check )2(1

T  against 
<S1, ..., Si> illustrated in Fig. 4. If the return value is 
0, it shows that the subtrees of )2(1

T ’s root does not 
contain any subtree in <S1, ..., Si>. However,  
itself may includes S

)2(1
T

1. So we need to check )2(1
T  

against S1 once again. Now, we consider the 
recursive call to check )(1 kT  against <S1> illustrated 
in Fig. 4. In this case, both )(1 kT  and <S1> are trees.  
If the return value is 0, it shows that )(1 kT  itself does 
not include S1. Then, a second checking as above is 
not needed. To avoid such a second checking, we 
mark the root of  when it is checked against the 
root of S

)(1 kT
1. 

In terms of the above observation, we devise a 
computation process as below. First of all, in the 
case of label(r1) = label(r2), we will check whether 
T1 includes <S1, ..., Sl>. The process returns an 
integer i, indicating that T1 includes <S1, ..., Si>. If i 
> 0, then we will check whether T2 includes 
<Si+1, ..., Sl> in a next step. If i = 0, it shows that no 
subtrees of T1’s root includes any subtrees in 
<S1, ..., Sl>. In this case, we need to check whether 
T1 includes S1. It is because although no subtrees of 
T1’s root includes any subtrees in <S1, ..., Si>, T1 
itself may include S1. If T1 includes S1, i will be 
changed to 1; otherwise, it remains 0. However, if 
the root of T1 does not match the root of S1, we know 
that T1 cannot include S1 since in this case we will 
have to check the subtrees of T1’s root against S1; 
and we have already done that with the result i = 0. 
We repeat this process until we find a kj such that 

checking against 
<S1, …, Sl> T1

jk contains all the remaining subtrees of rT 2, or find 
that such a kj does not exist.  
In the following algorithm tree-inclusion(T, S), T is 
a tree and S is a tree or a forest. If S is a forest, a 
virtual root for it is constructed, which matches any 
label. Thus, we will actually check the subtrees of 
T’s root against the subtrees in S, respectively.  In 
this way, a top-down process is switched over to a 
bottom-up process. In addition, each node v in T is 
associated with a mark, denoted mark(v). If v’s label 
is checked against the label of a node S, its mark is 
temporarily set to 1 to avoid possible redundant 
checkings. But the mark may be dynamically 
changed in the subsequent execution.  

T 1(2) <S1, …, Si>   (i ≤ l) 
checking against 

recursive call 

<S1> 
checking against T 1(k)

Figure 4: Illustration for calling top-down process
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Function tree-inclusion(T, S) 
Input: T - target tree; S - pattern tree. 
Output: 1 if T includes S; 0 if T doesn’t include S. 
begin 
1.  if |T| < |S| then {if S is a forest: <S1, ..., Sl> 
2.                         then S := <S1, ..., Si> for some i such that 
          |<S1, ..., Si>| ≤ |T| < |<S1, ..., Si+1>| 
3. else return 0;} 
4. let r1 and r2 be the roots of T and S, respectively; 
5. (*If S is a forest, construct a virtual root r2 for it, 
which  matches any label.*) 
6. let T1, ..., Tk be the subtrees of r1; 
7. let S1, ..., Sl be the subtrees of r2; 
8. if label(r1) = label(r2) 
9.  then {if r1 is a leaf then {if r2 is not a virtual root 
  then return 1 else return 0;}  
10. if r2 is not a virtual root then mark(r1) := 1; 
11. temp := <S1, ..., Sl>; S0 := φ; 
12. i := 1; j := 0; x := 0; (*i is used to scan T1, ..., Tk; and 
 j is used to scan S1, ..., Sl.*) 
13. while (i ≤ k ∧ temp ≠ φ) do 
14. {x := tree-inclusion(Ti, temp); 
15. if x > 0 then temp := temp/<Sj+1, ..., Sj+x>; 
16. else 
 {let v be the Ti’s root; let u be the Sj+1’s root; 
17. if v and u have the same label and mark(v) = 0 
18. then {x := tree-inclusion(Ti, Sj+1); 
   temp := temp/<Sj+x>;} 
             (*In the case that j = 0 and x = 0, Sj+x  = S0 = φ.*) 
19. else mark(v) := 0}   
          (*mark(v) is used only once in this case. Afterwards, 
           it will be set to 0 for the subsequent computation.*) 
20. i := i + 1; j := j + x;} 
21. if temp ≠ φ then {if r2 is a virtual root then 
return j 
22. else return 0;} 
23.  else {if r2 is a virtual root then return l 
24.    else return 1;}} 
25. else {for i = 1 to k do 
26.  {x := tree-inclusion(Ti, S); 
27.  if x = number-of-trees(S) then return 1;} 
 (* number-of-trees(S) is the number of the trees in S. A 
tree can be considered as a forest containg only that tree.*) 
28.  return 0;} 
end 

In Algorithm tree-inclusion(T, S), line 1 checks 
whether |T| < |S|. If it is the case, the algorithm 
returns 0 if S is a tree. If S is a forest, we will check 
T against the first i subtrees such that |<S1, ..., Si>| 
≤ |T| < |<S1, ..., Si+1>| (see line 2). In addition, when 
we check T against a forest <S1, ..., Sl>, a virtual root 
for it is constructed, which matches any label. Thus, 
we will actually check the subtrees of T’s root: 

T1, ..., Tk against S1, ..., and Sl to see whether they 
include <S1, ..., Sl> (see line 5). This is performed in 
a while-loop over Ti’s. In each step, a  
recursive call: tree-inclusion(Ti, <

il
, ..., SS l>) (i = 1, 

..., j for some j) is carried out, which returns an 
integer x, indicating that Ti includes <

il
, ..., 

1−+xli
> (see line 14). If x = 0, i.e., the subtrees of 

T

S
S

i’s root do not include any subtree in 
il
, ..., SS l, we 

need to check whether Ti include 
il
 since when we 

check T
S

i against 
il
, ..., SS l, what we have really 

done is to check the subtrees of Ti’s root, not Ti itself 
(see lines 16 - 19). If S is a tree, the algorithm return 
1 if it is included; otherwise, 0 (see line 22 and 24). 
Finally, we note that if the root of T does not match 
the root of S, the algorithm tries to find the first Ti 
that contains the whole S (see lines 25 - 28). 
In addition, we should pay attention to how mark(v) 
is used (see lines 10, 17, and 19). Each time when v 
is checked against a node (not a virtual node) in S, 
mark(v) is set to 1. It is used to avoid the call tree-
inclusion(T[v], Sj+1) after tree-inclusion(T[v], <Sj+1, 
..., Sl>) returns back if |Sj+1| ≤ |T[v]| < |<Sj+1, Sj+2>| 
(see line 17), where T[v] represents a subtree (in T) 
rooted at v. It is because in this case tree-
inclusion(T[v], Sj+1) must have been invoked during 
the execution of tree-inclusion(T[v], <Sj+1, ..., Sl>) 
and v has been definitely checked against Sj+1’s root 
in this process, which is recorded by setting mark(v) 
to 1 and used to avoid a second checking. However, 
it is used only in this case. After that, it should be set 
to 0 again for the rest part of the computation. This 
arrangement is correct because during the execution 
of tree-inclusion(T[v], <Sj+1, ..., Sl>), if |Sj+1| ≤ |T[v]| 
< |<Sj+1, Sj+2>|, v itself will be checked against Sj+1’s 
root. If |T[v]| ≥ |<Sj+1, ..., Sj+i>| for some i > 1, we 
will check the subtrees of v against <Sj+1, ..., Sj+i> 
and v is not really checked. In addition, in the rest 
part of the execution of tree-inclusion(T[v], <Sj+1, ..., 
Sl>), v is not checked. So, upon the return of tree-
inclusion(T[v], <Sj+1, ..., Sl>), we check the value of 
mark(v) to see whether tree-inclusion(T[v], Sj+1) has 
been invoked. Obviously, after this checking, 
mark(v) should be set to 0 again for the subsequent 
computation. 
Finally, we can show that the time complexity of the 
algorithm is bounded by O(|T|⋅height(S)). It is 
because although a node in T may be checked more 
than once, it is checked against different nodes in S, 
and all those nodes in S are on a same path. It is also 
easy to see that the algorithm needs no extra space. 
In the following, we apply the algorithm to the trees 
shown in Fig. 5 and trace the computation step-by 
step for a better understanding. 
Example 2. Consider two ordered, labeled trees T 
and S shown in Fig. 5, where each node in T is 
identified with ti, such as t0, t1, t11, and so on; and 
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each node in S is identified with sj. In addition, each 
subtree rooted at ti (sj) is represented by Ti (Sj). 
 
 
 
 
 
 

In the following step-by-step trace, ik is used as an 
index variable for scanning the subtrees of Tk’s root; 
jk is used to scan the corresponding subtrees in S; 
and xk is used as a temporary variable. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4 INTEGRATION OF 

SIGNATURES INTO TREE 
INCLUSION 

An advantage of the top-down strategy is that we 
can integrate the signature technique into the tree 
inclusion to speed up the computation. We assign 
each node v in T a bit string sv, called a signature, 

and each node u in S a bit string su in such a way that 
if su matches sv then the subtree Tv rooted at v may 
includes the subtree Su rooted at u. Otherwise, Tv 
definitely does not contain Su and the corresponding 
tree inclusion checkings can be cut off. Here, by 
“matching”, we mean for each bit set to 1 in sv, the 
corresponding bit in su is also set to 1 while for a bit 
set to 0 in sv, the corresponding bit in su can be 0 or 
1. 

t1 
t2 

d 
c 

e 
c 

b e 

t21t11 t12 t22

d 
c 

a s0

s1 

S: 

s2

Figure 5: Two trees 

Step-by-step trace:    Explanation:  
tree-inclusion(T, S)    Call tree-inclusion(T, S) 
  label(t0) = label(s0)    Check t0 against s0. 
  i0 := 1; j0 := 0; x0 := 0    i0 is for scanning the subtrees of t0; j0 is used to record how many 
     subtrees of s0 is included; x0 is a temporary variable.    
  tree-inclusion(T1, <S1, S2>)   recursive call tree-inclusion(T1, <S1, S2>). 
  label(t1) = label(virtual-root)  Check t1 against a virtual root. It always succeeds. 
  i1 := 1; j1 := 0; x1 := 0    i1 is for scanning the subtrees of t1; j1 is used to record how many   
     subtrees of s0 is included; x1 is a temporary variable.    
  tree-inclusion(T11, <S1, S2>)  recursive call tree-inclusion(T11, <S1, S2>). 
   |T11| < |<S1, S2>|    compare the sizes of T11 and <S1, S2>. 
   remove S2 from <S1, S2>  since <S1, S2> is larger than T11, remove S2 from <S1, S2>. 
   label(t11) = label(s1)   Check t11 against s1. Mark t11. 
   return 1    it returns 1, indicating that T11 includes S1. 
  x1 = 1; j1 = 1; i1 = 2    i1 is increased by 1; x1 is equal to 1 and then j1 is increased by 1. 
  tree-inclusion(T12, S2)    recursive call tree-inclusion(T12, S2). 
   label(t12) ≠ label(s2)   Check t12 against s2. Mark t12.  
   return 0    it returns 0, indicating that T12 does not include S2. The mark of t12 will prevent 
     the second checking of t12 against S2. 
  x1 = 0; j1 = 1; i1 = 3    i1 is increased by 1; x1 is equal to 0 and then j1 is not increased. 
  return 1    it returns 1, indicating that T1 includes S1 of <S1, S2>. 
  x0 = 1; j0 = 1; i0 = 2    i0 is increased by 1; x0 is equal to 1 and then j0 is increased by 1. 
  tree-inclusion(T2, S2)    recursive call tree-inclusion(T2, S2). 
   label(t2) ≠ label(s2)    Check t2 against s2. Since they do not match, all the subtrees of t2 will be 
     checked one by one. 
   i2 := 1; j2 := 0; x2 := 0    i12 is for scanning the subtrees of t2; j1 is used to record how many 
     subtrees of s0 is included; x2 is a temporary variable. 
   tree-inclusion(T21, S2)    recursive call tree-inclusion(T21, S2). 
    label(t21) ≠ label(s2)   Check t21 against s2. Mark t21. 
    return 0    it returns 0, indicating that T21 does not include S2. The mark of t21 will prevent 
     the second checking of t21 against S2. 
   x2 = 0; j2 = 0; i2 = 2    i2 is increased by 1; x2 is equal to 0 and then j2 is not increased. 
   tree-inclusion(T22, S2)    recursive call tree-inclusion(T22, S2). 
    label(t22) = label(s2)   Check t22 against s2. Mark t22. 
    return 1    it returns 1, indicating that T22 includes S2. 
   x2 = 1; j2 = 1; i2 = 3    i2 is increased by 1; x2 is equal to 1 and then j2 is increased by 1. 
   return 1    it returns 1, indicating that T2 includes S2 of <S1, S2>. 
  x0 = 1; j0 = 2; i0 = 3    i0 is increased by 1; x0 is equal to 1 and then j0 is not increased by 1. 
  return 2    since j0 = 2, tree-inclusion(T2, S2) returns 2. 
return 1  it returns 1, indicating that T includes S.  
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To do this, we firs assign each label a signature by 
using a hash function as doen in (C. Faloutsos , 
1992). Then, the signature for each node in a labeled 
tree can be done as follows: 
Let v be a node in a tree T. If v is a leaf node, its 
signature sv is equal to the signature assigned to its 
label.  
Otherwise, let v1, ..., vn be its children, then sv = s ∨ 

1v  ∨ ... ∨ 
nv , where s represents the signature for 

the label associated with v, and 
1v , ... , and  are 

the signatures of v

s s
s

nvs
1, ..., vn, respectively. 

Example 3. Consider the tree shown in Fig. 6(a). If 
the signatures assigned to the labels are those shown 
in Fig. 6(b). Each node in the tree will have a 
signature as shown in Fig. 6(c). 
Given two ordered, labeled trees T and S, we assign 
the signatures to their nodes in the same way. 
During the checking whether T includes S, we can 
use signatures to cut off some subtrees of T, which 
cannot contain S. For this purpose, we change the 
algorithm tree-inclusion( ) by introducing the 
signature checkings into it. The following algorithm 
is almost the same as the algorithm tree-inclusion( ); 
but each time when we check whether a subtree of T 
includes a subtree of S, the corresponding signatures 
will be first checked. Of course, before the execution 
of the algorithm, the node signatures have to be 
established for both T and S. 

Algorithm signature-tree-inclusion(T, S) 
Input: T, S 
Output: 1, if T includes S; otherwise, 0. 
begin 
1. if |T| < |S| then {if S is a forest: <S1, ..., Sl> 
2.                 then S := <S1, ..., Si> for some i such that 
   |<S1, ..., Si>| ≤ |T| < |<S1, ..., Si+1>| 
3. else return 0;} 
4. let r1 and r2 be the roots of T and S, respectively; 
5. (*If S is a forest, construct a virtual root for it, which 

matches any label.*) 
6. let t and s be the signatures of T and S , respectively; 
7. if s does not match t then returns 0; 
8. let T1, ..., Tk be the subtrees of r1; 
9. let S1, ..., Sl be the subtrees of r2; 

(*the rest part of the algorithm is exactly the same as lines 
8 – 28 in Algorithm tree-inclusion( ).*) 
end 

We pay attention to line 5. If S is a forest, a virtual 
root for S will be constructed and it does not have a 
signature. However, its signature can be easily 
established by superimposing the signatures of all 
the subtrees in S. Then, in lines 6 and 7, we check 
the corresponding signatures to remove the 
checkings for impossible tree inclusion. 
Example 4. Consider the tree T and S shown in Fig. 
5 again. To check whether T includes S, we will 
assign signatures to the labels and the nodes in T and 
S in the same way as shown in Fig. 7. Assume that 
the assignment of the signatures to the labels is 
shown in Fig. 6(b). Then, the checking of the forest 
containing s1 and s2 (in S) against the tree rooted at t1 
(in T) can be avoided. It is because the signature for 
the virtual node of the forest (equal to 0011 1101) 
does not match the signature for t1 (equal to 1111 
1000). 
 
 
 
 
 
 
 
 
 

 

5 CONCLUSION 

In this paper, a new strategy for evaluating path-
oriented queries are discussed. The main idea of the 
query evaluation is a new algorithm for checking the 
inclusion of a query tree S in a document tree T, by 
which a top-down process is interleaved with a 
bottom-up computation. The algorithm has the time 
complexity comparable to the best bottom-up 
method, but needs no extra space. In addition, it is 
more suitable for a database environment and can be 
combined with the signature technique to get rid of 
useless checkings for subtree inclusion. Obviously, 
this cannot be achieved using any bottom-up 
strategy. 
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