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Abstract:  One of the most common query types in spatial database management systems is the spatial intersection 
join. Many state-of-the-art join algorithms use minimal bounding rectangles to determine join candidates in 
a first filter step. In the case of very complex spatial objects, as used in novel database applications 
including computer-aided design and geographical information systems, these one-value approximations are 
far too coarse leading to high refinement cost. These expensive refinement cost can considerably be reduced 
by applying adequate compression techniques. In this paper, we introduce an efficient spatial join suitable 
for joining sets of complex rasterized objects. Our join is based on a cost-based decompositioning algorithm 
which generates replicating compressed object approximations taking the actual data distribution and the 
used packer characteristics into account. The experimental evaluation on complex rasterized real-world test 
data shows that our new concept accelerates the spatial intersection join considerably. 

1 INTRODUCTION 

The efficient management of complex objects has 
become an enabling technology for geographical 
information systems (GIS) as well as for many novel 
database applications, including computer aided 
design (CAD), medical imaging, molecular biology, 
haptic rendering and multimedia information 
systems. One of the most common query types in 
spatial database management systems is the spatial 
intersection join (Gaede V., 1995). This join 
retrieves all pairs of overlapping objects. A usual 
spatial join example of 2D geographical data is “find 
all cities which are crossed by a river”.  
In many applications, GIS or CAD objects, e.g. 
transportation networks of big cities or cars and 
planes, feature a very complex and fine-grained 
geometry where a high approximation quality of the 
digital object representation is decisive. Often the 
exact geometry of GIS objects is represented by 
polygons. A common and successful approach for 
their approximation is rasterization (Orenstein J. A., 
1986) (cf. Figure 1a). If the underlying grid is very 
fine, the filter step based on the rasterized objects is 
accurate enough so that no additional refinement step 

based on the polygon representations is necessary. 
Thereby, the computational complexity of 
intersection detection can significantly be reduced.  
 

Figure 1. Management of Complex Rasterized Objects in 
Relations.    a) Object relation, b) Auxiliary relation with 

decomposed object approximations
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In this paper, we aim at managing high-resolution 
rasterized spatial objects, which often occur in 
modern geographical information systems. High 
resolutions yield a high accuracy for intersection 
queries but result in high efforts in terms of storage 
space which in turn leads to high I/O cost during 
query and update operations. Particularly the 
performance of I/O loaded join procedures is 
primarily influenced by the size of the voxel sets, i.e. 
it depends on the resolution of the grid dividing the 
data space into disjoint voxels1. 

1.1  Preliminaries 

In this paper, we introduce an efficient sort-merge 
join variant which is built on a cost-based 
decompositioning algorithm for high-resolution 
rasterized objects yielding a high approximation 
quality while preserving low redundancy. Our 
approach does not assume the presence of pre-
existing spatial indices on the relations.  
We start with two relations R and S, both containing 
sets of tuples (id, mbr, link), where id denotes a 
unique object identifier, mbr denotes the minimal 
bounding rectangle conservatively approximating the 
respective object and link refers to an external file 
containing the complete voxel set of the rasterized 
object (cf.Figure 1a). In this paper, we assume that 
the voxel representation of the objects is accurate 
enough to determine intersecting objects without any 
further refinement step. In order to carry out the 
intersection tests efficiently, we decompose the high-
resolution rasterized objects. We store the generated 
approximations in auxiliary temporary relations (cf. 
Figure1b) allowing us to reload certain 
approximations on demand keeping the main-
memory footprint small. 
To the best of our knowledge, there does not exist 
any join algorithm which aims at managing complex 
rasterized objects stored in large files (cf. Figure 1a). 
In many application areas, e.g. GIS or CAD, only 
coarse information like the minimal bounding boxes 
of the elements are stored in a databases along with 
an object identifier. The detailed object description 
is often kept in one large external file or likewise in a 
BLOB (binary large object) stored in the database. 
In this paper, we will present an efficient version of 
the sort merge join which is based on this input 
format and uses an analytical cost-based 
decompositioning approach for generating suitable 
approximations for complex rasterized objects. 

                                                           
1 In this paper, we use the term voxel to denote a 2D 
pixel indicating that our approach is also suitable for 3D 
data. 

1.2  Outline 

The remainder of the paper is organized as follows: 
Section  presents a cost-based decompositioning 
algorithm for generating approximations for high-
resolution objects. In Section , we introduce our new 
efficient sort-merge join variant. In Section , we 
present a detailed experimental evaluation 
demonstrating the benefits of our approach. Finally, 
in Section , we summarize our work, and conclude 
the paper with a few remarks on future work. 

2 COST-BASED 
DECOMPOSITION OF 
COMPLEX SPATIAL OBJECTS 

In the following, the geometry of a spatial object is 
assumed to be described by a sequence of voxels. 

Definition 1 (rasterized objects) 

Let O be the domain of all object identifiers and let 

id ∈ O be an object identifier. Furthermore, let INd 

be the domain of d-dimensional points. Then we call 

a pair Ovoxel = (id, {v1, ..., vn})              a d       -

dimensional rasterized object. We call each of the vi 

an object voxel, where i ∈ {1, .., n}. 

A rasterized object (cf. Figure 1) consists of a set of 
d-dimensional points, which can be naturally ordered 
in the one-dimensional case. If d is greater than 1 
such an ordering does not longer exist. By means of 
space filling curves    , all 
multidimensional rasterized objects are mapped to a 
set of integers. As a principal design goal, space 
filling curves achieve good spatial clustering 
properties since voxels in close spatial proximity are 
encoded by contiguous integers which can be 
grouped together to intervals.  

Examples for space filling curves include the 
lexicographic-, Z- or Hilbert-order (cf. Figure 2), 
with the Hilbert-order generating the least intervals 
per object (Faloutsos C. et Al., 1989) (Jagadish H. 
V., 1990) but being also the most complex linear 

lexicographic order Hilbert-orderZ-order

Figure 2. Examples of space-filling curves in the 
two-dimensional case.

 

O 2INd×∈

ρ :INd IN→

Figure 2: Examples of space-filling curves in the two-
dimensional case 
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ordering. As a good trade-off between redundancy 
and complexity, we use the Z-order throughout this 
paper.  
The resulting sequence of intervals, representing a 
high resolution spatially extended object, often 
consists of very short intervals connected by short 
gaps. Experiments suggest that both gaps and 
intervals obey an exponential distribution (Kriegel 
H., 2003). In order to overcome this obstacle, it 
seems promising to pass over some “small” gaps in 
order to obtain much less intervals, which we call 
gray intervals.  
In the remainder of this section, we will introduce a 
cost-based decompositioning algorithm which aims 
at finding an optimal trade-off between replicating 
and non-replicating approximations. In Section 2.1, 
we first introduce our gray intervals formally, and 
show how they can be integrated into an object 
relational database system (ORDBMS). In Section 
2.2, we discuss why it is beneficial to store the gray 
intervals in a compressed way. In Section 2.3, we 
introduce a cost-model for object decompositioning, 
and introduce, in Section 2.4, the corresponding 
cost-based decompositioning algorithm.  

2.1  Gray intervals 

Intuitively, a gray interval (cf. Figure 3) is a covering 
of one or more ρ-order-values, i.e. integer values 
resulting from the application of a space filling curve 
ρ to a rasterized object (id, {v1, ..., vn}), where the 
gray interval may contain integer values which are 
not in the set {ρ(v1), ...,ρ(vn)}. 

Definition 2 (gray interval, gray interval sequence) 
Let (id, {v1, ..., vn}) be a rasterized object and  

 be a space filling curve. Furthermore, let W = {(l, 
u), l ≤ u}⊆IN2 be the domain of intervals and let b1 = 
(l1, u1), …, bn = (ln, un)∈ W be a sequence of 
intervals with ui + 1 < li+1, representing the set 
{ρ(v1), ...,ρ(vn)}. Moreover, let m ≤ n and let i0, i1, 
i2, …, im ∈ IN such that 0 = i0 < i1 < i2 < …< im = n 
holds. Then, we call Ogray = (id, <  

, …,                      >) a gray interval sequence of 
cardinality m. We call each of the j = 1, …, m groups  

                          of Ogray a gray interval Igray. 

In Table 1, we introduce operators for a gray interval 
Igray = <(lr ,ur),…, (ls ,us)>. Figure 3 demonstrates the 
values of some of these operators for a sample set of 
gray intervals. 

Storage of gray intervals. As indicated in Figure 
1b, the approximations, i.e. the gray intervals, are 
organized in auxiliary relations. We map the gray 

intervals to the complex attribute data of the relation 
GrayIntervals which is in Non-First-Normal-Form 
(NF2) (cf. Figure 3). It consists of the hull H(Igray) 
and a BLOB containing the byte sequence B(Igray) 
representing the exact geometry. Important 
advantages of this approach are as follows: First, the 
hulls H(Igray) of the gray intervals can be used in a 
fast filter step. Furthermore, we use the ability to 
store the content of a BLOB outside of the table. 
Therefore the column B(Igray) contains a BLOB 
locator. This enables us to access the possibly huge 
BLOB content only if it is required and not auto-
matically at the access time of H(Igray). In the next 
section we discuss how the I/O cost of BLOBs can 
be reduced by applying compression techniques. 

2.2  Compression of gray intervals 

In this section, we motivate the use of packers, by 
showing that B(Igray) contains patterns. Therefore, 
B(Igray) can efficiently be shrunken by using data 
compressors. Furthermore, we discuss the properties 
which a suitable compression algorithm should 
fulfill. In the following, we give a brief presentation 
of a new effective packer which is promising for our 
approach. It exploits gaps and patterns included in 
the byte sequence B(Igray) of our gray interval Igray. 

Patterns. To describe a rectangle in a 2D vector 
space, we only need 4 numerical values, e.g. we need 
two 2-dimensional points. In contrast to the vector 
representation, an enormous redundancy might be 
contained in the corresponding voxel sequence of an 
object, an example is shown in Figure 4. As space 
filling curves, in particular the Z-order, enumerate 
the data space in a structured way, we can find such 
“structures” in the resulting voxel sequence 
representing simply shaped objects. We can pinpoint 
the same phenomenon not only for simply shaped 
parts but also for more complex real-world spatial 
parts. Assuming we cover the whole voxel sequence 
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of an object id by one interval, i.e. Ogray = (id, 
_Igray_), and survey its byte representation B(Igray) in 
a hex-editor, we can notice that some byte sequences 

occur repeatedly. For more details about the 
existence of patterns in B(Igray) we refer the reader to 
(Kunath P., 2002).  

We will now discuss how these patterns can be used 
for the efficient storage of gray intervals. 

Compression rules. A voxel set belonging to a gray 
interval Igray can be materialized and stored in a 
BLOB in many different ways. A good 
materialization should consider two “compression 
rules”: 

A good join response behavior is based on the fulfill-

ment of both aspects. The first rule guarantees that 

the I/O cost                 are relatively small whereas 

the second rule is responsible for low CPU cost                                     

.             . The overall cost  

 for the evaluation of a BLOB is composed of both 
parts. A good behavior related to an efficient 
retrieval and evaluation of B(Igray) depends on the 
fulfillment of both rules.  

As we will show in our experiments, it is very 
important for a good retrieval- and evaluation-
behavior to find a well-balanced way between these 
two compression rules.  

Spatial compression techniques. In this section, we 
look at a new specific compression technique, which 
is designed for storing the voxel set of a gray interval 
in a BLOB. According to our experiments, the new 
data compressor outperforms popular standard data 
compressors such as BZIP2 (Burrow M. et Al., 
1994). 

Quick Spatial Data Compressor (QSDC). The 
QSDC algorithm is especially designed for high 
resolution spatial data and includes specific features 
for the efficient handling of patterns and gaps. It is 
optimized for speed and does not perform time 
intensive computations as for instance Huffman 
compression. QSDC is a derivation of the LZ77 
technique (Lempel A. et Al., 1977).  

QSDC operates on two main memory buffers. The 
compressor scans an input buffer for patterns and 
gaps. QSDC replaces the patterns with a two- or 
three-byte compression code and the gaps with a 
one- or two-byte compression code. Then it writes 
the code to an output buffer. QSDC packs an entire 
BLOB in one piece, the input is not split into smaller 
chunks. At the beginning of each compression cycle 
QSDC checks if the end of the input data has been 
reached. If so, the compression stops. Otherwise 
another compression cycle is executed. Each pass 
through the cycle adds one item to the output buffer, 
either a compression code or a non-compressed 
character. Unlike other data compressors, no 
checksum calculations are performed to detect data 
corruption because the underlying ORDBMS ensures 
data integrity. 

The decompressor reads compressed data from an 
input buffer, expands the codes to the original data, 
and writes the expanded data to the output buffer. 
For more details we refer the reader to (Kunath P., 
2002), where it was shown that QSDC is more 
suitable for spatial query processing than zlib 
(Lempel A. et Al., 1977) due to the higher (un)pack 
speed and an almost as high compression ratio.  

Rule 1 : As little as possible secondary storage 
should be occupied.

Rule 2 : As little as possible time should be needed
for the (de)compression of the BLOB.

 

costBLO B costBLOB
I/O costBLOB

CPU+=  

 

Figure 3. Gray interval sequence.
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2.3  Cost model 

For our decompositioning algorithm we take the esti-
mated join cost between a gray interval Igray and a 
join-partner relation T into account. Let us note that 
T can be either of the tables R or S (cf. Figure 1a), or 
any temporary table containing derived information 
from the original tables R and S (cf. Figure 1b). The 
overall join cost costjoin for a gray interval Igray and a 
join-partner relation T are composed of two parts, 
the filter cost costfilter and the refinement cost 
costrefine: 

costjoin(Igray,T) = costfilter(Igray,T) + costrefine(Igray,T). 

The question at issue is, which decompositioning is 
most suitable for an efficient join processing. A good 
decompositioning should take the following 
“decompositioning rules” into consideration: 

 

The first rule guarantees that costfilter is small, as 
each gray interval Igray,T of the join-partner relation T 
has to be loaded from disk (BLOB content excluded) 
and has to be evaluated for intersection with respect 
to its hull.  

In contrast, the second rule guarantees that many 
unnecessary candidate tests of the refinement step 
can be omitted, as the number and size of gaps 
included in the gray intervals, i.e. the approximation 
error, is small. Finally, the third rule guarantees that 
a candidate test can be carried out efficiently. Thus, 
Rule 2 and Rule 3 are responsible for low costrefine. A 
good join response behavior results from an 
optimum trade-off between these decompositioning 
rules.  

Filter cost. The costfilter(Igray,T) can be computed by 
the expected number of gray intervals Igray,T of the 
join partner relation T. We penalize each intersection 
test by a constant cf which reflects the cost related to 
the access of one gray interval Igray,T and the 
evaluation of the join predicate for the pair 
(H(Igray),H(Igray,T)):  

costfilter(Igray,T) = Ngray(T) . cf,  

where Nvoxel(T) (number of voxels) ≥ Ngray(T) 
(number of gray intervals) ≥ Nobject(T) (number of 
objects) holds for the join-partner relation. The value 
of the parameter cf depends on the used system.  

Refinement cost. The cost of the refinement step 

costrefine is determined by the selectivity of the filter 
step. For each candidate pair resulting from the filter 
step, we have to retrieve the exact geometry B(Igray) 
in order to verify the intersection predicate. 
Consequently, our cost-based decompositoning 
algorithm is based on the following two parameters:  

•  Selectivity σfilter of the filter step. 

•  Evaluation cost costeval of the exact geometries. 

The refinement cost of a join related to a gray 
interval Igray can be computed as follows: 

costrefine(Igray, T) = Ngray(T) · σfilter(Igray,T) · costeval(Igray). 

In the following paragraphs, we show how we can 
estimate the selectivity of the filter step σfilter and the 
evaluation cost costeval. 

Selectivity estimation. We use simple statistics of 
the join-partner relation T to estimate the selectivity 
σfilter(Igray,T). In order to cope with arbitrary interval 
distributions, histograms can be employed to capture 
the data characteristics at any desired resolution. We 
start by giving the definition of an interval 
histogram: 

Definition 3 (interval histogram). 
Let D= [0,2h–1] be a domain of interval bounds, 
h≥1. Let the natural number ν∈IN denote the 
resolution, and βν= (2h–1)/ν be the corresponding 
bucket size. Let bi,ν= [1+(i–1)·βν,1+i·βν) denote the 
span of bucket i, i∈{1, …, ν}. Let further T= {(l,u), 
l≤u} ⊆ D2 be a database of intervals. Then, IH(T,ν) 
= (n1,…, nν)∈INν is called the interval histogram on 
T with resolution ν, iff for all i∈{1,.., ν}: 

ni = |{ψ ∈ T | ψ intersects bi,ν}| 

The selectivity σfilter(Igray,T) related to a gray interval 
Igray can be determined by using an appropriate 
interval histogram IH(T,ν) of the join partner 
relation T. Based on IH(T, ν), we compute a 
selectivity estimate by evaluating the intersection of 
Igray with each bucket span bi,ν (cf. Figure 5).  

Definition 4 (histogram-based selectivity estimate). 
Given an interval histogram IH(T,ν)=(n1,...,nν) with 
bucket size β, we define the histogram-based 
selectivity estimate σfilter(Igray,T), 0≤σfilter(Igray,T) ≤1 
by the following formula:  

 

σfilter(Igray,T)= 

 

 

 

where overlap returns the intersection length of two 
intersecting intervals, and 0, if the intervals are 
disjoint. 

Rule 1 : The number of gray intervals should be small.

Rule 2 : The approximation error of all gray 
intervals should be small.

Rule 3 : The gray intervals should allow an efficient 
evaluation of the contained voxels.

 

overlap H Igray( ) bi ν,,( )
β
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Note that long intervals may span multiple histogram 
buckets. Thus, in the above computation, we 
normalize the expected output to the sum of the 
number ni of intervals intersecting each bucket i 
rather than to the original cardinality n of the 
database. 

BLOB-Evaluation cost. The evaluation of the 
BLOB content requires to load the BLOB from disk 
and decompress the data. Consequently, the 
evaluation cost depends on both the size L(Igray) of 
the uncompressed BLOB and the size Lcomp(Igray) << 
L(Igray) of the compressed data. Additional, the 
evaluation cost costeval depend on a constant 
cI/Oloadrelated to the retrieval of the BLOB from 
secondary storage, a constant ccpudecomprelated to 
the decompression of the BLOB, and a constant 
ccputestrelated to the intersection test. The cost 
ccpudecompand cI/Oload heavily depend on how we 
organize B(Igray) within our BLOB, i.e. on the used 
compression algorithm. A highly effective but not 
very time efficient packer, e.g. BZIP2, would cause 
low loading cost but high decompression cost. In 
contrast, using no compression technique, leads to 
very high loading cost but no decompression cost.  

 

Our QSDC (cf. Section 2.2) is an effective and very 
efficient compression algorithm which yields a good 
trade-off between the loading and decompression 
cost. Finally, ccputest solely depend on the used 
system. The overall evaluation cost are defined by 
the following formula: 

Join cost. To sum up the join cost costjoin(Igray) 
related to a gray interval Igray and a join-partner 
relation T can be expressed as follows: 

costjoin(Igray,T) = 
Ngray(T)·(cf + σfilter(Igray,T) ·costeval(Igray)),  

where the filter selectivity and BLOB-evaluation cost 
are computed as described in Section 2.3. 

2.4  Decompositioning algorithm 

For each rasterized object, there exist many different 
possibilities to decompose it into a gray interval 
sequence. 

Based on the formulas for join cost related to a gray 
interval Igray and a join-partner relation T, we can 
find a cost optimum decompositioning algorithm. In 
this section, we present a greedy algorithm with a 
guaranteed worst-case runtime complexity of O(n) 
which produces decompositions helping to 
accelerate the query process considerably.  

For fulfilling the decompositioning rules presented 
in Section 2.3, we introduce the following cost-based 
decompositioning algorithm for gray intervals, called 
CoDec (cf. Figure 6). CoDec is a recursive top-down 
algorithm which starts with a gray interval Igray 
initially covering the complete object. In each step of 
our algorithm, we look for the longest remaining 
gap. We carry out the split at this gap, if the 
estimated join cost caused by the decomposed 
intervals is smaller than the estimated cost caused by 
our input interval Igray. The expected join cost 
costjoin(Igray,T) can be computed as described above. 
Data compressors which have a high compression 
rate and a fast decompression method, result in an 
early stop of the CoDec algorithm generating a small 
number of gray intervals. Let us note that the 
inequality “costgray>costdec” in Figure 6 is 

independent of Ngray(T), and thus Ngray(T) is not 
required during the decompositioning algorithm. 

3 JOIN ALGORITHM 

In contrast to the last section, where we focused on 
building the object approximations and organizing 
them within the database, we introduce a concrete 

 

Figure 6. Decompositioning algorithm CoDec.
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Figure 6: Decompositioning algorithm CoDec. 
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join algorithm based on CoDec in this section. Our 
join algorithm is based on the worst-case optimal 
interval join algorithm described in (Arge L. et Al., 
1998) and on the cost-based decompositioning 
approach described in the last section. In the 
following, we consider R and S as input relations (cf. 
Figure 1a). The join algorithm is performed in plane-
sweep fashion where we approximate each object o 
by the z-values of its mbr, i.e. an object is 
approximated by one gray interval [z-
val(mbr.lower), z-val(mbr.upper)] (cf. Figure 4). We 
process these gray intervals according to their 
starting points. Note that we assume that we have 
access to the mbrs, without accessing the detailed 
object description stored in a file (cf. Figure 1a).  

As we cannot assume that the sweep-line status com-
pletely fits in memory, we additionally use two auxil-
iary relations R’ and S’ (cf. Figure 1b) to hold the 
actual sweep-line status on disk. Both relations R’ 
and S’ follow the NF2 of the relation GrayIntervals 
(cf. Figure 3). 

In order to adjust the object approximations to the 
data distribution of the respective join-partner 
relation, we apply our decomposition algorithm (cf. 
Section 2.4). For the computation of the data 
distribution we use interval histograms where we 
perform the decomposition in two steps employing 
two different interval histograms for each data set. 
The interval histograms IHSweep,R’ and IHSweep,S’ 
represent the data distribution within the actual 
sweep-line status and are dynamically updated. The 
other interval histograms IHAll,R and IHAll,S represent 
the overall data distribution, derived from R and S 
and are static. In the following, we assume that all 
interval histograms have the same resolution v, so 
that their bucket borders are congruent. An example 
is shown in Figure 7. The figure shows for relation R 
that only the decomposed gray intervals left from the 
actual sweep-line status contribute to the histogram 
IHSweep,R’ whereas IHAll,R takes all one value gray 
intervals into consideration.  

Our sort-merge join algorithm consists of two phases 
where the second phase in turn consists of three steps 
which are performed for each object. The complete 
join algorithm described in the following is depicted 
in Figure 8: 

Preprocessing phase. Initially, we gather the 
statistics about the data distribution of R and S where 
each object o is approximated by the z-values of its 
mbr, i.e. o is approximated by one gray interval [z-
val(mbr.lower), z-val(mbr.upper)]. Note that this 
preprocessing step can be carried out efficiently, as 
we do not have to access the complex object 
representations. The statistical data distribution of 
the gray intervals is stored in two interval histograms 
IHAll,R and IHAll,S. Next, we order the union of both 
relations R and S according to the value z-
val(mbr.lower) of their objects.  

Join phase. We apply a plane sweep algorithm to 
walk through this sorted list containing gray intervals 
of both relations R and S. The event points of this 
algorithm are the starting points of the gray intervals. 
Each encountered interval Igray = (l, u) from relation 
S is now processed according to the following four 
steps2: 

Step 0: First, we carry out a coarse filter step. We 
test whether Igray can possibly intersect a gray 
interval of relation R by exploiting the statistical 
information stored in IHAll,R. If there cannot be any 
intersection as Igray spans only empty buckets of 
IHAll,R, we are finished for this object. Otherwise, the 
exact object description, i.e. the content of the file, is 
loaded for Igray and we continue with the Step 1.  

Step 1: Igray is decomposed based on the data 
distribution of the actual sweep-line status of the 
relation R’, i.e. by applying IHSweep,R’, and stored in a 
temporary list QueryIntervals. This first 
                                                           

2 The intervals for R are treated similarly. 

 
Figure 7: Intervals stemming from R and the 

corresponding histograms IHSweep,R’ and IHAll,R. 

 

ICEIS 2005 - HUMAN-COMPUTER INTERACTION

26



decompositioning aims at finding an optimum 
decompositioning for querying the already 
decomposed intervals of relation R stored in R’.  

In the same step we also decompose Igray applying 
the statistics IHAll,R and buffer the result in another 
temporary list, called DatabaseIntervals. This 
decompositioning anticipates an optimum 
approximation for assumed gray query intervals of 
relation R, which have not yet been processed. 

Step 2: The temporary list QueryIntervals is used as 
query object for the relation R’. We report all objects 
having a gray interval I’gray stored in R’ which 
intersects at least one of the decompositions of Igray. 
These intersection queries can efficiently be carried 
out by following the approach presented in (Kriegel 
H., 2003). 

Step 3: The decomposed intervals of the temporary 
list DatabaseIntervals are stored in a compressed 
way in the temporary relation S’. Finally, we have to 
update the interval histogram IHSweep,S’.  

Note that this sort-merge join variant does not 
require any duplicate elimination. Furthermore, the 
main memory footprint of the presented join 
algorithm is negligible because we do not keep the 

sweep-line status in main-memory. Even if we kept it 
in main memory, the use of suitable data 
compressors would reduce the BLOB sizes of the 
tables R’ and S’ considerably leading to a rather 
small main memory-footprint (cf. Section 4). 

4 EXPERIMENTAL EVALUATION 

In this section, we evaluate the performance of our 
approach with a special emphasis on different 
decompositioning algorithms in combination with 
various data compression techniques DC. We used 
the following data compressors: no compression 
(NOOPT), the BZIP2 approach (Seward J.) and the 
QSDC approach. Furthermore, we decomposed 
object voxels into gray intervals following two 
decompositioning algorithms, called MaxGap and 
CoDec. 

MaxGap. This decompositioning algorithm tries to 
minimize the number of gray intervals while not 
allowing that a maximum gap G(Igray) of any gray 
interval Igray exceeds a given MAXGAP parameter. 
By varying this MAXGAP parameter, we can find the 
optimum trade-off between the first two opposing 
decompositioning rules of Section , namely a small 
number of gray intervals and a small approximation 
error of each of these intervals. A one-value interval 
approximation is achieved by setting the MAXGAP 
parameter to infinite. 

CoDec. We decomposed the voxel sets according to 
our cost- based decompositioning algorithm CoDec 
(cf. Section 2.4), where we set the resolution of the 
used histograms to 100 buckets. 

Let us note, that the decompositioning based on 
MaxGap(DC) does not depend on DC or any 
statistical information about the data distribution, 
whereas CoDec(DC) takes the actual data 
compressor DC and the actual data distribution into 
account for performing the decompositioning. 

The refinement-step evaluation of the intersect() 
routine was delegated to a DLL written in C. All 
experiments were performed on a Pentium 4/2600 
machine with IDE hard drives. The database block 
cache was set to 500 disk blocks with a block size of 
8 KB and was used exclusively by one active 
session. 

Test data sets. The tests are based on two test data 
sets CAR (3D CAD data) and SEQUOIA (subset of 
2D GIS data representing woodlands derived from 

 

Figure 8: Two-phase sort-merge join 
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the SEQUOIA 2000 benchmark (Stonebraker M., 
1993)). The first test data set was provided by our 
industrial partner, a German car manufacturer, in 
form of high resolution rasterized three-dimensional 
CAD parts.  

data set # voxels # objects size of data space 

CAR 14x106 200 233 cells 

SEQUOIA 32x106 1100 234 cells 

 

In both cases, the Z-order was used as a space filling 
curve to enumerate the voxels. Both test data sets 
consist of many short black intervals and short gaps 
and only a few longer ones. 

Compression Techniques. Figure 9 shows the 
different storage requirements of the BLOBs with 
respect to the different data compression techniques 
for the materialized gray intervals. For high 
MAXGAP values, the BZIP2 approach yields very 
high compression rates, i.e. compression rates up to 
1:100 for the SEQUOIA dataset and 1:500 for the 
CAR dataset. Note that the higher compression rates 
for the CAR dataset are due to fact that it is a 3D 
dataset, whereas the SEQUOIA dataset is a 2D 
dataset. This additional dimension leads to an 
enormous increase of the BLOB sizes making 
suitable compression techniques indispensable. On 
the other hand, due to a noticeable overhead, the 
BZIP2 approach occupies even more secondary 
storage space than NOOPT for small MAXGAP 
values. Contrary, the QSDC approach yields good 
results over the full range of the MAXGAP 
parameter. Using the QSDC compression technique, 

we achieve low I/O cost for storing (Step3) and 
fetching (Step2) the BLOBs which drastically 
enhances the efficiency of the join process.  

Decomposition-Based Join Algorithm. In this para-
graph, we want to investigate the runtime behavior of 
our decomposition- based join algorithm presented 
in Section . We performed the intersection join over 
two relations, each containing approximately a half 
of the parts from the CAR dataset. We took care that 
the data of both relations have similar 
characterizations with respect to the object size and 
distribution. Similarly, the intersection join is 
performed on parts of the SEQUOIA data set which 
is divided into two relations, consisting of 
deciduous-forest and mixed-forest areas. 

Dependency on the MAXGAP parameter. In Figure 
10 and Figure 11 it is shown how the response time 
for the intersection join, including the preprocessing 
step, depends on the MAXGAP parameter, if we use 
no cache, i.e. the temporary relations R’ and S’ are 
not kept in main memory. The preprocessing time, 
i.e. the time for the creation of the statistics, is 
negligible. Step 0 of the join phase, i.e. the loading 
of the exact object descriptions, is rather high and 

 

 

Figure 9: Storage requirements for the BLOB: 
a) SEQUOIA, b) CAR 

 

Figure 10: Comparison between MaxGap and CoDec 
grouping based on different compression algorithms 

(main memory cache disabled) (SEQUOIA): 
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almost constant w.r.t. a varying MAXGAP parameter. 
On the other hand, Step 1, the statistic-based 
decompositioning of our gray intervals is very cheap 
for our CoDec algorithm, and for the Maxgap-
approach it is not needed. Step 2, i.e. the actual 
intersection query, heavily depends on the used 
MAXGAP-value and the applied compression algo-
rithm.  

For small MAXGAP-values we have rather high cost 
for all compression techniques as the number of used 
gray query intervals is very high. For high MAXGAP 
values we only have high cost, if we use the NOOPT 
compression approach. On the other hand, if we use 
our QSDC-approach the actual cost for the 
intersection queries stay low, as we have rather low 
I/O cost and are able to efficiently decompress the 
gray intervals. If we use the BZIP2-approach for 
high MAXGAP-values, we also have low I/O cost but 
higher CPU cost than for the QSDC-approach. Due 
to these rather high CPU cost, the BZIP2 approach 
performs worse than the QSDC-approach. The 
incidental cost for Step 3, i.e. the storing of the 

decomposed gray intervals in temporary relations, 
can be explained similar to the cost for Step 2. Note 
that the cost for Step 2 and Step 3 are smaller if we 
allow a higher main memory footprint.  

For MAXGAP-values around 106 our join algorithm 
works most efficiently for the QSDC and BZIP2 

compression approaches. Note that our CoDec-based 
decompositioning yields results quite close to these 
optimum ones. For the NOOPT-approach the best 
possible runtime can be achieved for MAXGAP-
values around 104. Again, the runtime of our join 
based on the CoDec-algorithm is close to this 
optimum one, justifying the suitability of our 
grouping algorithm.  

Dependency on the available main memory. Figure 
12 shows for the CAR dataset how the runtime of the 
complete join algorithm depends on the available 
main-memory. We keep as much as possible of the 
sweep-line status in main memory instead of 
immediately externalizing it. The figure shows that 
for uncompressed data Step 2 and Step 3 (cf. Figure  
8) are very expensive if the available main memory 
is limited. If we use our CoDec algorithm without 
any compression, we need 50 MB or more to get the 
best possible runtime. If we use CoDec in 
combination with the QSDC approach, we only need 
about 2 MB to get the best runtime. The two 
optimum runtimes are almost identical because one 
of the main design goals of the QSDC was high 
unpack speed. Note that already by a main memory 
footprint of 0 KB, i.e. the sweep-line status cache is 
disabled, the QSDC approach achieves runtimes 
close to the optimum ones demonstrating a high 
compression ratio of the QSDC. 

Figure 13 for the CAR dataset and Figure 14 for the 
SEQUOIA dataset show the influence of the 
available main memory for one-value interval 

approximations, i.e. Ogray = (id, Igray), and gray 
approximations formed by our CoDec algorithm. 
The one-value interval approximations produce more 
false hits resulting in higher refinement cost. Note, 
that one-value interval approximations of 
uncompressed data cannot be kept in main memory 
even if allowing a main memory footprint of up to 
1.5 GB. Furthermore the figures demonstrate the 
superiority of the QSDC approach compared to the 

 

 

Figure 11: Comparison between MaxGap and CoDec 
grouping based on different compression algorithms 

(main memory cache disabled)(CAR). 

Figure 12: Sort-merge join performance for different 
cache sizes of the sweep-line status (CAR dataset). 

left column: CoDec(NOOPT), 
right column: CoDec(QSDC) 
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BZIP2 approach independent of the available main 
memory. This superiority is due to the high (un)pack 
speed of the QSDC and a comparable compression 
ratio.  

To sum up, our cost-based decompositioning 
algorithm CoDec together with our QSDC approach 
leads to a very efficient sort-merge join while 
keeping the required main memory small. For 
reasonable main memory sizes we achieve an 
acceleration by more than one order of magnitude 
for the SEQUOIA dataset and by more than two 
orders of magnitude for the CAR dataset compared 
to the traditionally used non-compressed one-value 
approximations. 

5 CONCLUSIONS  

Complex rasterized objects are indispensable for 
many modern application areas such as geographical 
information systems, digital-mock-up, computer-
aided design, medical imaging, molecular biology, or 

real-time virtual reality applications as for instance 
haptic rendering. In this paper, we introduced an 
efficient intersection join for complex rasterized 
objects which uses a cost-based decompositioning 
algorithm generating replicating compressed object 
approximations. The cost model takes the actual data 
distribution reflected by statistical information and 
the used packer characteristics into account. In order 
to generate suitable compressed approximations, we 
introduced a new spatial data compressor QSDC 
which achieves good compression ratios and high 
unpack speeds. In a broad experimental evaluation 
on real-world geographical and 3D CAD datasets, 
we demonstrated the efficiency of our new spatial 

join algorithm for complex rasterized objects. 

In our future work, we want to apply our new join-
method to virtual reality applications, where the 
efficient management of complex rasterized objects 
is also decisive.  
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Figure 13: Overall sort-merge join performance for 
different cache sizes of the sweep-line status (CAR 

dataset).  

Figure 14: Sort-merge join performance for 
different cache sizes of the sweep-line status 

(SEQUOIA dataset) 
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