
DESIGN AND IMPLEMENTATION ASPECTS OF
MANAGEMENT SYSTEMS FOR APPLICATION SERVICE

PROVIDING

Michael Höding
University of Applied Sciences Brandenburg, PF 2132, D-18737 Brandenburg, Germany

Keywords: Application Service Providing, Design Patterns, System Monitoring.

Abstract: This contribution discusses management software for Application Service providing (ASP). For the
development of such software systems numerous specific requirements have to be considered. As examples
we discuss aspects of heterogeneity. Because of this a flexible software engineering approach is necessary,
covering design and implementation. For that we propose design patterns and component technology. The
application of design patterns is demonstrated in examples.

1 INTRODUCTION

Application Service Providing (ASP) is a business
model to support medium scaled enterprises with
highly integrated and complex business software
(Kern and Kreijger, 2001), (Tao, 2001), (Knolmayer,
2002). The Application Service Provider implements
a technical and organisational infrastructure that
guarantees a high degree of data security and system
availability. Several customers share the use of the
computing centre infrastructure (ref. fig. 1).

Enterprise A

Enterprise B

Enterprise K

W
id

e
Ar

e a
 N

et
w

or
ks

Application Service Provider

System r

System s

System x

System t
Storage

Backup

Storage

Lo
ca

l N
et

w
or

ks

Enterprise A

Enterprise B

Enterprise K

W
id

e
Ar

e a
 N

et
w

or
ks

Application Service Provider

System r

System s

System x

System t
Storage

Backup

Storage

Lo
ca

l N
et

w
or

ks

Figure 1: Customers and Components in ASP

The technical administration of a computing

centre for ASP should be supported by an
administration or monitoring software (Hoding and
Faustmann, 2001). This software has to cover a wide
range of hardware and software components. The
design and implementation of such a system is
driven by numerous requirements:

• Distribution: An ASP installation is, by
default, a distributed system, containing
several server computers and specific
devices, e.g. storage or backup. Beside this,
also non-IT-components have to be
covered.

• Multi-tier-architecture: Generally software
hosted with ASP is client/server-based.
Mainly a 3-tier-architecture (user interface,
application server, database server) is used.

• Flexibility of the system (during runtime):
Due to the necessary degree of availability
the ASP installation as well as the
management system has to be enhanced
during runtime. Therefore flexibility of the
management system is a key requirement.

• Different kinds of heterogeneity exist
despite the same software

• Usability needs results in the requirement
of management from global view to in deep
analysis by different representations
(views)

Obviously one has to deal with hardware
heterogeneity. Beside a number of server computers,
different kinds of sharable hardware components,
e.g. storage devices or backup devices have to be
considered. Moreover infrastructural hardware like
air condition enhances this aspect of heterogeneity
which has to be controlled by the management
software.

371
Höding M. (2005).
DESIGN AND IMPLEMENTATION ASPECTS OF MANAGEMENT SYSTEMS FOR APPLICATION SERVICE PROVIDING.
In Proceedings of the Second International Conference on e-Business and Telecommunication Networks, pages 372-375
DOI: 10.5220/0001419703720375
Copyright c© SciTePress

Despite of the fact, that sometimes an ASP offers
only one (or a limited number of) standard software,
heterogeneity can be found on different levels of
system distribution. This is caused by different
requirements of the customers, e.g. in workload.
Figure 2shows the distribution of a classical 3-tier-
architecture, consisting of user interface, application
server and database server. Generally the user
interface is running on a dedicated client computer.
A common approach implements application server
and database server on one server computer (1 at 1).
Powerful servers can host more than one application
system (many at 1). Otherwise systems with high
workload can distribute many application servers
and many database servers on dedicated computers
(1 at many). Finally we have to point out, that these
configurations are relevant for the same software.
For example: “many at 1” and “1 at 1” are common
installations of SAP R/3. Another example is web
service providing which is offering variants from
shared server, dedicated server up to server farms.

Figure 2: Distribution Variants of a 3-Tier-System

Based on a more detailed and systematic

description of foundations and core requirements of
a distributed administration system for ASP we
discuss the application of object-oriented techniques
for modelling and implementation of such a system.
Therefore first a common approach defines an
interface to non object-oriented monitor modules by
encapsulation into a monitor object (ref. fig. 3). This
is called a wrapper.

Figure 3: Monitoring and Wrapping

2 RELATED WORK

The design of a complex object-oriented system can
be supported by the methodology of design patterns
presented in (Gamma et. al, 1994). In that way, the
requirements can be applied to a pattern catalogue to
design suitable object models.

First we discuss the Bridge pattern (fig 4). The
intention of the bridge is the design of an abstract
interface to one or more concrete implementations.
The loose coupling by a message based notification
algorithm results in advances like flexible activation
of new implementations during runtime or
encapsulation of heterogeneity, i.e. for not object-
oriented monitor kernels.

Figure 4: The Bridge Pattern (Gamma et. al, 1994)

Figure 5 shows the Observer pattern. Here an

observed object (Subject) is loosely coupled with
one or many observing objects (Observer). There the
abstract objects Subject and Observer are specialised
into ConcreteSubject and ConcreteObservers. New
observers register themself with the subject method
attach() during runtime. The subject notifies his
registered observers when its internal state is
changed.

Figure 5: The Observer Pattern (Gamma et. al, 1994)

With respect to the fact of distribution we refer

to patterns for distributed systems, e.g. as presented
in (Brown et. al, 1999). Here specific design patterns
for distributed systems support the aspect of
communication in networked environments.

The implementation of a distributed
administration software for ASP can be done by
available systems e.g. Tivoli (Uelpenich, 1999) or
PATROL (Boeheim, 1997). To avoid the
administration overhead by available software

UI

DBS

AS

UI

DBS

AS

DBS

AS

UI

DBS

AS AS

DBS

many at 1 1 at 1 1 at many

UI

DBS

AS

UI

DBS

AS

DBS

AS

UI

DBS

AS AS

DBS

many at 1 1 at 1 1 at many

Database
System Monitor

(e.g. perl)

API
triggers

writes
Protocol

File

object-oriented API

N
et

w
or

k

Composite
Monitor

Component Framework

Database
System Monitor

(e.g. perl)

API
triggers

writes
Protocol

File

object-oriented API

N
et

w
or

k

Composite
Monitor

Component Framework

Abstraction

operation()

Implementor

operImp()

impl.operImp()

RefinedAbst. Concrete
ImplementorA

bridge

Concrete
ImplementorB

Abstraction

operation()

Implementor

operImp()

impl.operImp()

RefinedAbst. Concrete
ImplementorA

bridge

Concrete
ImplementorB

ConcrSubje
getState()

Subject
attach()
detach()
sendNotific()

Observer
update()

notify

ConrceteObserv
upadate()
getState()

ConcrSubje
getState()

Subject
attach()
detach()
sendNotific()

Observer
update()

notify

ConrceteObserv
upadate()
getState()

ICETE 2005 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

372

products a dedicated implementation for the given
computing center architecture can be suitable. For
such an implementation component frameworks e.g.
Java Beans (Matena and Stearns, 2001) can cover
heterogeneity on hardware and operating system
level.

SOAP is often used for the communication
between heterogeneous components (Apps, 2004).
The automatic generation of communication
interfaces is supported by different component
frameworks, e.g. Java and .net. Hereby monitors,
implemented in C#, can bee accessed by a Java-
Class and vice versa.

3 USE BRIDGE PATTERN TO
ENCAPSULATE SPECIFIC
MONITORS

Often monitors for specific system components are
based on non object-oriented techniques, e.g. parsing
and filtering log files or accessing internal runtime
information by operating system calls. For such
concrete implementations the bridge supports an
abstract interface as illustrated in the figure 6. Here
we depict two concrete monitor implementations for
accessing status logs (FileMonitor) and for accessing
the process table of the operating system
(ProcMonitor). Via the bridge and the abstract
monitor class specific monitors, e.g. for the Oracle
DB software can use the available implementations.

Figure 6: Bridge Pattern for Viewers and complex Monitor

However other patterns should be discussed to
solve this problem. The adapter pattern as well as
the wrapper pattern well-known from CORBA can
support suitable solutions. The application of the
Model-View-Controler pattern (Gamma et. al, 1994)
offers two interesting aspects. First, every monitor
can be designed according to MVC. Here the model
encapsulates the specific request to the observed
system, e.g. reading and matching a log file. The
views support a set of representations in different

granularity. In that way a basic monitor is directly
usable for the administration staff. Second, the
monitor functions primary as a model according to
the MVC pattern. View and controller function is
part of higher levels of the architecture. This
simplifies the implementation (keep it small and
simple) and enhanced the performance. The first
idea we will illustrate in the next section.

4 USE OBSERVER PATTERN TO
CONSTRUCT COMPLEX
MONITORSAs depicted before a Monitor

is a specific software module to control a component
in the system, e.g. the hardware of a server computer
or the database management software. This monitor
is an observed subject. As examples we construct
two types of observers:

• First for every specific monitor one (or

many) viewer represents the state of a
monitor by a graphical user interface. This
is an application of the Model-View-
Controller concept (Gamma et. al, 1994).

• Second a complex monitor aggregates

simple or other complex monitors to
support a more general view to the system.

Figure 7 shows the derivation of a Monitor from

the abstract Subject class. Concrete observers, here
ComplexMonitor and MonitorViewer, are derived
from the abstract Observer.

Figure 7: Use of Observer Pattern to construct complex
Monitors

An instance of such implementation is sketched
in figure 8. Here the operating system of one server
computer, the database system Oracle, and two SAP
application servers are monitored by OSMonitor,
OracleMonitor, and two SAPMonitors. For a
SAPMonitor an observing viewer shows the general
state of the monitored systems using a traffic light as
a metapher (Green means OK, Yellow means
warning, Red means critical). For the OSMonitor a

Monitor
getState()

MonitorImp

impl.operImp()

OracleMonitor

ProcMonitor FileMonitor

bridge
getState()

getState()

readProcTable() readLogFile()

getState()SAPMonitor

Monitor
getState()

MonitorImp

impl.operImp()

OracleMonitor

ProcMonitor FileMonitor

bridge
getState()

getState()

readProcTable() readLogFile()

getState()SAPMonitor

Monitor
getState()

Subject
attach()
detach()
sendNotific()

Observer
update()

notify

ComplexMonitor
upadate()
getState()

MonitorViewer
upadate()

Monitor
getState()

Subject
attach()
detach()
sendNotific()

Observer
update()

notify

ComplexMonitor
upadate()
getState()

MonitorViewer
upadate()

DESIGN AND IMPLEMENTATION ASPECTS OF MANAGEMENT SYSTEMS FOR APPLICATION SERVICE
PROVIDING

373

viewer shows workload aspects by the means of a
diagram. Beside the viewers a ComplexMonitor
aggregates all simple monitors. In that way a flexible
architecture supports different types of controlled
system components. Moreover a general view could
be supported constructing a viewer to the complex
monitor.

Figure 8: Monitor observed by complex Monitors and
Viewers

5 CONCLUSION AND OUTLOOK

This contribution discusses the design of
management systems for complex computing centre
infrastructures, especially for ASP. For that we
propose the application of design patterns. We
sketched the application of design patterns by the
means of two examples. In future work a more
detailed study has to consider additional design
patterns. I. e., the factory pattern should be a good
solution to clone monitor objects or viewers for
distribution. Finally we have to point out, that
patterns help to meet the requirement of flexibility,
also during runtime. For implementation issues a
component framework should be used. Thereby the
requirements distribution and heterogeneity on
platform level can be fulfilled.

Further work is dealing with a classification of
services and components which have to be observed.
There are dimensions e.g. time, time span, volume,
traffic, usage, weather or profile. The multi-
dimensional space of these vectors is associated with
so called system events, e.g. problem situations. To
improve quality approaches like data-mining should
be adopted.

REFERENCES

Apps. A.: zetoc SOAP: A Web Services Interface for a
Digital Library Resource in Proc. Of Research and
Advanced Technology for Digital Libraries, 8th

European Conference, ECDL 2004, Bath, UK, Sept.,
2004.

C. Boeheim Patrol. Sys Admin: The Journal for UNIX
Systems Administrators, 6(2), p. 16-22, February
1997.

K. Brown, P. Eskelin, N. Pryce. A Mini-Pattern Language
for Distributed Component Design. PLoP 1999
Conference. Pattern Languages of Programs, August
1999.

E. Gamma, R. Helm, R. Johnson, an J. Vlissides: Design
Patterns Elements of Reusable Object-Oriented
Software: Addison Wesley, 1994.

M. Höding, A. Faustmann: Administration of data
intensive Application-Hosting-Scenarios (In German).
Foundations of Database Systems 2001: 63-67

T. Kern, J. Kreijger: An Exploration of the Application
Service Provision Outsourcing Option. HICSS 2001

Knolmayer, G., Application Service Providing (ASP), in:
Wirtschaftsinformatik 42 (2000) 5, S.443-446.

V. Matena, B. Stearns. Applying Enterprise JavaBeans:
Component-Based Development for the J2EE
Platform. Addison-Wesley, 2001.

D. C. Schmidt, P. Stephenson: Experience Using Design
Patterns to Evolve Communication Software Across
Diverse OS Platforms. ECOOP 1995: 399-423.

L. Tao: Shifting Paradigms with the Application Service
Provider Model. IEEE Computer 34(10): 32-39 (2001)

S. Uelpenich: Extending the Reach of Tivoli Distributed
Monitoring - Creating a Custom Monitoring
Collection. The Managed View, 3(2), pp. 21-40,
Springer 1999.

SAPMonitor

ComplexMonitor
upadate()
getState()

OracleMonitor

SAPMonitor

OSMonitor

SAPViewer

dpw: ok
btc: ok
abap: ok

SAPViewer

dpw: ok
btc: ok
abap: ?

OSViewer

load avg 12 %

SAPMonitor

ComplexMonitor
upadate()
getState()

OracleMonitor

SAPMonitor

OSMonitor

SAPViewer

dpw: ok
btc: ok
abap: ok

SAPViewer

dpw: ok
btc: ok
abap: ?

OSViewer

load avg 12 %

ICETE 2005 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

374

