
HARDENING WINDOWS SYSTEMS

George Davida
P.O. Box 784

Department of Electrical Engineering and Computer Science
University of Wisconsin - Milwaukee

Milwaukee, WI 53201

Jon Peccarelli
Department of Electrical Engineering and Computer Science

University of Wisconsin - Milwaukee
Milwaukee, WI 53201

Keywords: Operating system security, intrusion detection, vulnerability assessment, restricted tokens.

Abstract: Microsoft Windows systems have been the favourite target of viruses, worms and spyware in recent years.
Through a kernel level process, we can secure Windows™processes by running them in a form of a sandbox.
These sandboxes are configured to only allow a subset of rights to be granted to the process, therefore limiting
the ability of a rogue process or a compromised process to inflict damage on the rest of the system.

1 INTRODUCTION

Microsoft Windows™has been a target of viruses,
worms, spyware and other malicious code due to a
history of insecure systems. In recent years, a con-
certed effort has been made to secure Windows™.
The software firewall has been enabled by default.
Hotfixes have been made available for any security re-
lated issues once they are discovered. Microsoft has
released an anti-spyware product to combat the spy-
ware issue. And they have published whitepapers on
hardening the operating system through security, ac-
count and local policies. Yet the operating system is
still venerable to malicious processes that run in the
user context. Many problems with security breaches,
viruses, worms and spyware can be traced to systems
that allow too many rights to processes.

Therefore, the focus is to control the bounds of a
process. In other words, put the process in a sand-
box. However, these sandboxes would work differ-
ently than the typical sandbox. This sandbox could
then be modified by a master kernel level process to
grant specific rights approved by the user, administra-
tor or some other external, trusted source. Processes
that were not predefined would run in a default sand-
box with very limited rights, thus limiting the risk of
running, either knowingly or unknowingly, untrusted
processes. This would limit the ability of a virus in
an e-mail to be able to infect, or install, itself on the
host computer, since the process would be unknown
and therefore run in a limited sandbox. For example,

spyware would be blocked from installing on the host
system since it would not have rights to write to the
disk and registry.

A benefit of this approach is that system perfor-
mance remains nearly unaffected by this method of
protection, since there is not a constantly running
process watching the other processes on the system,
unlike the typical sandbox. When a process is created,
its security context is adjusted. The process may take
a few more clock cycles to start, but this should be
fairly invisible to user in terms of performance degra-
dation. This is in stark contrast to anti-virus soft-
ware which is constantly running and scanning every
process and file that is accessed on the system, and to
other past attempts that are constantly intercepting all
system calls.

2 SECURING PROCESSES

Security in Windows™(NT,2000,XP) is handled by
security identifiers (SIDs), tokens and access checks
at many different levels. Files, devices, volumes, and
registry keys are all examples of items that can be pro-
tected. This list also includes processes. Access to-
kens are utilized by Windows™to handle system se-
curity. The security reference monitor (SRM) is re-
sponsible for the definition and use of these access
tokens. (Russinovich and Solomon, 2005)

User-level processes typically inherit the rights of

367
Davida G. and Peccarelli J. (2005).
HARDENING WINDOWS SYSTEMS.
In Proceedings of the Second International Conference on e-Business and Telecommunication Networks, pages 368-371
DOI: 10.5220/0001416703680371
Copyright c© SciTePress



Notification of new
process creation

Retrieve Hash of Binary Set access token
on process

Return

Capture security
token requests
from application

Apply default
access token

Logging
Enabled

Match Hash
Yes

Yes

No

No

Figure 1: Filter Kernel Driver

the main user-mode process (userinit.exe). The main
user-level process is originally created during the lo-
gon process for the user. (Russinovich and Solomon,
2005) Since this user-level process has the same rights
as the logged on user, any program launched un-
der this user will have these rights. There is an in-
herit problem with this blanket approach. Processes
that the user may not want to launch, or may be un-
aware of, can be run under the users security con-
text, namely viruses and spyware. It would be nice to
have a way to control the access token each process
inherited, and even grant limited security rights to
processes not known by the user and/or system. By
utilizing restricted tokens in Windows™, we can cre-
ate processes with limited privileges and limited ac-
cess control lists.

2.1 Related Work

Many techniques have been developed to secure
processes above the standard operating system secu-
rity.

In a client-server architecture, execution manage-
ment was controlled by system administrators us-
ing an execution management utility (EMU). In this
scheme, each user has a unique execution control list
(ECL) which is essentially a database of programs the
user is allowed to execute. Identification of programs
is accomplished by the MD5 hash of the executable
binary and the executable name. Through the use of
a kernel driver, all new process creation is controlled.
(Schmid et al., 2001)

Microsoft added a technology called group policy
to its Active Directory environments. An adminis-
trator can control which executables are able to run
on a computer through a software restriction policy.
(Trent, 2004) Programs are either allowed to run or
not, with no change to security of the running process.
This technology also requires a computer to be part
of an Active Directory environment, therefore home

computers are not able to use a software restriction
policy.

The idea of a sandbox is to control and monitor a
user-level process, through a set of instructions from
a configuration or policy file. A sandbox runs as a
process wrapper, intercepting all system calls from
the ”wrapped” process. The sandbox either allows
or denies the system call based on a configuration
file. This can be used to limit access to the entire
filesystem, for example, by presenting a subdirectory
in the filesystem as the root of the filesystem to the
”wrapped” process. Janus was developed to monitor
a user-level process and deny harmful system calls.
(Goldberg et al., 1996) Janus is an example of a sand-
box.

Kernel hypervisors are a layer of software that pro-
vides a set of ”virtual” system calls. These can be
used to provide fine-grained security control, for ex-
ample. (Mitchem et al., 1997)

2.2 Methodology

The EMU and Microsoft approaches are an all-or-
nothing scheme, i.e. a user is either allowed or de-
nied the ability to run an application. Once an ap-
plication is allowed to run, no additional security is
provided. The sandbox and hypervisors are processes
that run and constantly monitor, and possibly deny,
system calls and requests. Our approach is to mod-
ify the security token of the process before execution
and leverage all of the granularity and security of the
operating system.

The following list is the basic steps for creating a
process via the CreateProcess function. (Russinovich
and Solomon, 2005)

1. Open the image file to be executed.

2. Create the executive process object.

3. Create the initial thread.

ICETE 2005 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

368



4. Notify the subsystem of the new process so that it
can set up for the new process and thread.

5. Start execution of the initial thread

6. In the context of the new process and thread, com-
plete the initialization of the address space and be-
gin execution of the program.

The item of interest in this list is step two, creat-
ing the executive process object. During this step, a
copy of the parent’s access token is made, which be-
comes the new process’s access token. Since this to-
ken grants access under the user’s security context, it
is the key to hardening the system.

The first step to controlling the security context of
processes is to take control of the process creation
process. This is accomplished through a kernel driver.
The idea is to capture the process creation process,
locate the proper security context for the process and
execute the process with the appropriate access token.

For this whole process to work correctly and se-
curely, the security credentials need to be stored in a
manner that prevents, and in the worst case detects,
tampering. The security context for each process are
stored in a Execution Control List database. This in-
formation is stored in a format that is encrypted and
digitally signed for security and authentication pur-
poses. The kernel driver is the only process that is
allowed to write to thi database.

An important point to note is that this concept, by
itself, cannot successfully secure a system. When
combined with proper techniques already available to
secure a Windows™system, this concept can yield
a much more secure system. This technique also
requires the use of an access-based filesystem, like
NTFS, to work properly. If write access cannot be
restricted to the ECL database, the kernel driver will
be able to identify a compromised system through an
invalid digital signature.

This entire methodology is related to the idea of
running each and every process on the computer un-
der a unique user id. Each process would have a se-
curity context that would be inherited from a unique
user id. However, there are some concerns using this
methodology. First, how does one process access
shared information from another process, since they
are running under different user contexts? And sec-
ondly, how does one manage such a large number of
user accounts, especially in the example of multiple
users running on one system (i.e. Terminal Services)?

2.3 Process Identification

For this technique to function properly, a method
needs to be used to accurately identify processes.
This method needs to be able to determine if a ma-
licious process is trying to run as a known validated

process. For example, assume notepad.exe has previ-
ously been identified, validated and has a ECL entry
in the database. Now a malicious process names it-
self notepad.exe. This process should not be allowed
to run under the original notepad.exe security context.
Therefore, a method of process identification needs to
developed to ensure that the proper security context is
assigned to the intended process only.

A digital signature or hash will be created from the
process’s executable image. This signature will then
be stored in the database to identify the process. Be-
fore a process is allowed to execute, it’s signature will
be compared to those in the database. If a match is
found, the access token associated with that signature
will be used. Otherwise, the process will be handled
as an unknown process as described in Section 2.5. If
an executable file is updated through a service pack,
patch or upgrade, the digital signature will need to be
updated as well, otherwise it could be denied the abil-
ity to execute properly.

2.4 Extracting an ECL

Two approaches can be utilized to create an Execu-
tion Control List for a process. The first approach is
to start the process without any rights and add rights
as needed. This approach is very secure, however
it requires an in-depth knowledge of the process in
question. Since most Windows™programs are closed
source, this is usually not possible by the end-user,
unless a trial and error approach is attempted. The de-
velopers would have the knowledge required to create
an ECL for each process as described in Section 2.6 .

The second approach is to run the process with a
monitor in place. The kernel driver can log all secu-
rity token requests of the monitored process. Once
this has been completed, the ECL information can be
incorporated into the ECL database. From this point,
the user can just use this ECL as is or make modifi-
cations to the ECL. This allows the user to limit the
rights of the process without generating this list from
scratch.

2.5 Default Execution Control List

What happens when a process is launched that doesn’t
have an Execution Control List associated with it?
If the process were allowed to run without an ECL,
this would be a breach of the hardening of the sys-
tem. Therefore, an approach needs to be developed to
eliminate this potential threat.

When a process is created that does not have an
ECL associated with it, the process is created with
a default access token. This token can be defined
with predetermined access rights. These predeter-
mined access rights could deny all rights to the sys-
tem - thereby eliminating the ability of any unknown

HARDENING WINDOWS SYSTEMS

369



Kernel Driver
Monitor

Monitor

ECL Database
Process

Process

Figure 2: ECL Extraction

process from executing on the system. The kernel
driver can also be configured to automatically log the
token access requests and start building an ECL for
the new process. This would allow the user to incor-
porate this information in the system-wide ECL data-
base. Multiple default Execution Control Lists could
be defined and utilized depending on the process’s
parent.

2.6 Future Use

Execution Control Lists could be delivered with an
application installation. The developers would be
responsible for identifying the appropriate rights re-
quired for each process in the application to work
properly. Currently, many Windows™developers as-
sume the application will have full access to the entire
system, which is a large security problem. This would
slow, or maybe even stop, that practice.

For tighter security, incorporation into kernel
would be the next logical step. Therefore, a callback
would not have to be registered to catch process cre-
ation. The process would be created with the proper
security token directly from the operating system, in-
stead of catching the process creation and modify-
ing the initial process access token. The most logi-
cal place for this incorporation would be the security
reference monitor (SRM).

A central execution management server could be
developed to control an Execution Control List for a
corporation, thereby limiting the exposure of individ-
ual corporate computers to spyware, viruses and other
malicious executables.

REFERENCES

Goldberg, I., Wagner, D., Thomas, R., and Brewer, E. A.
(1996). A secure environment for untrusted helper ap-
plications. InProceedings of the 6th Usenix Security
Symposium, San Jose, CA, USA.

Mitchem, T., Lu, R., and O’Brien, R. (1997). Using kernel
hypervisors to secure applications.Proceedings of the
13th Annual Computer Security Applications Confer-
ence (ACSAC’97).

Russinovich, M. and Solomon, D. (2005).Microsoft Win-
dows Internals. Microsoft Press, Redmond, 4th edi-
tion.

Schmid, M., Hill, F., and Ghosh, A. K. (2001). Preventing
the execution of unauthorised win32 applications. In
Proceedings of the 2001 DARPA Information Surviv-
ability Conference and Exposition, Anaheim, CA.

Trent, R. (2004). Using software restriction policies to
block spyware-adware.

ICETE 2005 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

370


