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Abstract. Recommendations are a valuable help for library users e.g. striving
to gain an overview of the important literature for a certain topic. We describe
a new method for generating recommendations for documents based on cluster-
ing purchase histories. The algorithm presented here is called restricted random
walk (RRW) clustering and has proven to cope efficiently with large data sets.
Furthermore, as will be shown, the clusters are very well suited for giving recom-
mendations in the context of library usage data.

1 Motivation and Introduction

Services like amazon.com’s “Customers who bought this book also bouglaire an
important service — for all involved parties: The customer receives assistance in finding
his way through the range of books offered by the shop, the bookseller has the possibil-
ity to increase its sales by proposing complementary literature to its customers [1].

Technically, a recommender service can be implemented in different ways. We will
present an innovative approach based on a fast clustering algorithm for large object
sets [2] and making use of product cross-occurrences in purchase histories: In our case,
the purchase histories are those of users of the Online Public Access Catalogue (OPAC)
of the university’s library at Karlsruhe, and a purchase is the viewing of a document’s
detail page in the WWW interface of the OPAC. A cross-occurrence between two doc-
uments is given when their detail pages have been viewed together in one user session.

Following the standard assumption for behavior-based recommender systems, we
assume that a high number of cross-occurrences hints at a high complementarity of two
documents that we can interpret in the recommender context as similarity.

The paper is structured as follows: We start by outlining existing recommender
systems and cluster algorithms in section 2. In section 3 we will present the restricted
random walk clustering algorithm before discussing the generation of recommendations
from clusters in section 4. Results will be shown in section 5 and a conclusion as well
as an outlook onto further research topics are given in section 6.

2 Recommender systems and Cluster Algorithmsfor Library
OPACs

General classification schemes for recommender systems have been presented by Resnick
and Varian [3], by Schafer et al. [1], and Gaul et al. [4].
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The systems we will scrutinize more closely are so-calledlicit recommender
systems that generate recommendations from user protatal-de.g. purchase his-
tories at the (online) store, Usenet postings or bookmankéthout the need of user
cooperation. This distinction between implicit and expliecommender systems is
important since no additional customer effort is necestagain these recommenda-
tions and thus incentive-related problems like free ridindgpias are minimal. This has
been discussed e.g. by Geyer-Schulz et al. [5] or Nichols [6]

All recommender systems mentioned here have in commontteatio not perform
content analysis, contrary to information retrieval basezthods as described for in-
stance by Semeraro [7], Yang [8] and others. This is imposgite in a hybrid library
like the one in Karlsruhe, only a fraction of the corpus isilade in digital form.

Currently, two methods are being broadly used to generatenmmendations from
purchase histories: A straightforward one employed fotainse by amazon.com, and
an LSD model based approach using Ehrenberg’s repeat btly@mgy [9] used for
example at the university library in Karlsruhe [10].

The first approach is to recommend the books that have beeghbfar viewed)
most often together with the book the customer is currerthsalering. The challenges
of this idea lie mainly in its implementation for large dattss even if the matrix of
common purchases is quite sparse.

Another, more sophisticated model makes use of Ehrenberpgisat buying the-
ory [9,10]. Its advantage lies in a noticeably better quadit the recommendations,
because the underlying assumption of a logarithmic sergstiition allows to distin-
guish between random and meaningful cross-occurrencesor@arobust way.

However, these recommender systems only take into accinget deighborhoods
in the similarity graph generated by the purchase histoEiash extension that includes
the neighbors of the neighbors into the recommendationsklyubecomes computa-
tionally intractable. This is not the case with clusterdzthsecommender systems: the
recommendations do not only contain the documents direeked to each other, but
the clusters also account for indirect relations whereithi@cessary.

For a general overview of clustering and classification itlyms, we refer to Duda
et al. [11] or Bock [12]. In the past there have been some malsdor recommender
systems or collaborative filtering based on cluster algor# [13, 14].

We chose restricted random walk clustering for two reasismgsbility to cope with
large data sets that will be discussed in section 3.4 anduhktyjof its clusters with
respect to library purchase histories.

Viegener [15] investigated the use of cluster algorithmstifi@ construction of a
library’s thesaurus extensively. On the one hand, Viegenesults are encouraging be-
cause he found semantically meaningful patterns in libcata. On the other hand,
all standard cluster algorithms proved to be computatigredpensive — Viegener's
results were computed on a supercomputer at the Unigeksitrisruhe that is not avail-
able for routine library operations. Besides, the qualftthe clusters generated by the
algorithms scrutinized may not be sufficient for recommdioda. Single linkage clus-
tering for instance is prone to bridging, i.e. to conneciimdependent clusters via an
object located between clusters, a bridge element.
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The bridging effect is much weaker with restricted randontkvedustering as has
been shown by Sdil and Paschinger [16] and it is even smaller with the modifans
proposed in [2]. Furthermore the cluster size is more apatgfor giving recommen-
dations as will be demonstrated in section 3.3.

A more comprehensive overview of the performance of réstlicandom walk clus-
tering in comparison to other cluster algorithms can be doarthe appendix of [17].

3 Restricted Random Walks

The basic idea of clustering with restricted random walks@milarity graph as first
described by Sdll and Paschinger [18] is as follows: Start at a randomlyseimonode,
and advance through the graph by iteratively picking a ri@glof the current node as
successor. While walking over the document set, we only dengidges for the neigh-
borhood that have a higher similarity than the edge takematetst step. This procedure
is repeated until we arrive at a document via its highesghted incident edge, then
another walk is started. The foundation of the cluster gontbn is the assumption
that the higher the position of an edge in a walk is, the highis importance and thus
the probability that the two documents connected by the adgé the same cluster.
In this section, we will develop the idea in a more formal way.

3.1 Thelnput Data

We derive our input data from purchase histories generatagsérs of the Karlsruhe
OPAC hosted at the university’s library. As users browseugh the catalogues, they
contribute to constructing raw baskets: Each session WgtPAC contains a number
of documents whose detail page the user has inspected. @tassdaggregated and
stored in the raw baskets such that the raw basket of a dodwuetains a list of all
other documents that occurred in one or more sessions tygetth it. Furthermore,
the cross-occurrence frequency of the two documentshieeniimber of sessions that
contain both documents, is included in the raw basket.

We interpret these cross-occurrence frequencies as a redasuhe similarity of
two documents and construct a similarity gragh= (V, E,w) as follows:V, the set of
vertices, is the set of documents in the OPAC with a purchesserl; if two documents
have ever been viewed together in a sessior, V' xV contains an edge between these
documents, and the weighi; on the edge between documenésd; is the number of
cross-occurrences ofandj. w;; is set to zero in order to prevent the walk from visiting
the same document in two consecutive steps. The neighbibdf@document or node
consists of all documents that share an edge with it.

3.2 TheWalks

Formally, a restricted random walk is a series of noBles (i, ...,i.) € V" that has
a finite length - in this case — contrary to normal random walks that may beifafin

T viy = { (i, J)|Winj > Wiy i } (1)
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Fig. 1. An example similarity graph

is the set of all possible successors edges that have a higight than(i,,,—1,,,) and
thus can be chosen in the + 1st step.

In order to obtain a sufficient covering of the complete doenhset, we start several
walks from each node, labeling the start node@sCurrently, we use ten walks per
node, more sophisticated methods are being developednasidgm graph theory [19].

For the start of the walk, we choose at random one of the sbald’s neighbors as
i1, this choice is based on a uniform distribution. The set afsgale successor edges
is constructed as the set of all incident edges, afith a higher weight, i.e. similarity
thanw,y;, : Tigi, = {(417)|wiy; > wigiy +- From this setis is picked at random using
a uniform distribution and’;, ;, is constructed accordingly. This procedure is repeated
until 73, is empty, i.e. until no incident edge with a higher weightaarid. For an
example of such a walk, consider Fig. 1.

When a walk starts from nod, the first successor node may either®der C with
equal probability. IfC is chosen, the only successor edg€'B and after thaBBA. As
we can see, at this point there is no edge with a higher welgirt 7, the weight on
BA. Thus the walk ends here. Similarly, we might get walks k€, CDE, DCAB,
andED.

The formulation of the walk as a stochastic process on theedfthe graph and
the introduction of an “empty” transition state as shown2hlgad to an intransitive
and infinite Markov chain, which allows the application oétborresponding tool set
for the investigation of the properties of the process.

From the description of the walks it is clear that there is pedhto consider the
whole matrix at a time like other cluster algorithms do. é&&t, only local information,
namely the neighborhood of the current node or one row of ithdasity matrix per
step is needed in order to complete the walks. This is a fécabigreatly facilitates the
implementation and the time and space requirements of gositim.

3.3 TheClusters

For the actual cluster construction, several variants eaerbployed: The original ap-
proach by Scbll and Paschinger or the walk context introduced in [2].

Itis important to note that clustering with restricted randwalks does not generate
one cluster, but a hierarchy of clusters. Thus it is necgdsafix a cutoff levell, i.e.
a height at which a cut is made through the treelike strudeadrogram) in order to
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determine the cluster for a given nodel ¢ainnot be fixed in advance, cluster hierarchies
allow the user to interactively explore clusters by adaptime level and judging the
quality of the resulting clusters. If cluster members amesbby the minimum level at
which they belong to the cluster, it is equally feasible te tisem top members for
recommendations.

The original idea by Sdhill and Paschinger was to generate, for a given node, com-
ponent clusters as follows: A series of grafiis = (V, Ey) is constructed from the
data generated by all walkg. is the set of objects visited by at least one walk. An edge
(i,7) is present inEy if the transition(z, j) has been made in ttieth step of any walk.

Then, the union

H, = U2,Gy ()

is constructed for each levél Scholl and Paschinger define a cluster at levels a
component (connected subgraph) /f. Consequently, if a path between two nodes
exists inH;, they are in the same cluster.

In the example given above containing the waltGB A, BC,CDE, DC AB, and
ED this means that/s = (V,{BA}) (the edges are undirected, thus there is no dis-
tinction betweemBA andAB) andG, = (V,{CB, DE,CA}). As a consequence, the
only cluster at level 4 i§ A, B}, at level 3 we get the clustefsA, B, C'} and{D, E'},
reflecting nicely the structure of the original graph.

The problem with this clustering approach is that we expeee very large clusters
with our purchase histories, sometimes containing sevenadlred documents even at
the highest step level available. We conjecture that theores a bridging effect due to
documents covering more than one subject or read in commegith documents from
different domains thus linking clusters.

Furthermore, the step number as level measure has two msfahdntages: First,
it mixes final steps from short walks that have a relativefyhhsignificance with steps
from the middle of long walks where the random factor is stitbng. This is evident
for the clusters at = 3: Although C and D have a high similarity, they do not appear
in the top-level cluster because the walks containing thesmt@o short. Second, the
maximum step level is dependent on the course of the walkedisis/the underlying
data set and cannot be fixed a priori.

As remedy for the large clusters, we introduced walk contéssters: Instead of
including all documents indirectly connected to the onelesiion, we only consider
those nodes that have been visited in the same walk as thewfae cluster is to be
generated (the central cluster), respecting the conditiahboth nodes have a higher
step level than the given cutoff in the corresponding walkisThas the advantage of
reducing the cluster size on the one hand and the bridgiegtesh the other since it is
less probable that some bridge between different clusterd&en crossed in the course
of one of the walks containing the document in question. Ef/@anbridge element is
included in the walk, the number of documents from anothesteks that are falsely
included in the currently constructed cluster is limitecg only members of the walk
are considered that are located relatively near the britigeent.

For walk context clusters, different measures exist fordiuster level: The step,
the level and adjusted levels. The step shows the same wsesaksedescribed above
(cf. [2]) and will not be considered further. The level is defil as a relative position of
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the step in a walk.
step number

= — 3)
total steps in this walk
For the adjusted levels, two variants were tested:
__ stepnumber- 1 ()
~ total steps in this walk
and . b
+ step number (5)

" total steps in this walk- 1

Those have the advantage of taking into account the totgthesf the walk: While
the first (and last) step from a one-step walk has much lesainggthan the tenth from
a ten-step walk, both have the levek 1. The adjusted levels, however, only converge
asymptotically to one for the last step in a walk. The longerwalk, the higher are
and!™ of its last step. The quality of these measures will be disedisn section 5.

In our example, the clusters A= 1 are as follows{ A, B}, {B, A,C}, {C, B},
{D, E}, {E, D} where the first node is the central node for the respectivaeluAs
can be seen, a cluster-based recommendatioR focludes botd andC' whereas”'s
recommendation does not contdi This will be discussed further in section 4.

3.4 Complexity

Letn be the number of documents or, more generally, node$ilSxatd Paschinger [18]
give a time complexity 0O (log n) per walk; log seems to be a good estimate. Execut-
ing 10 walks per document we get a total complexityXdfion logn) = O(n log n).

Considering the development of the usage data over thenlastdars, it is possible
that the size of the neighborhood — and thus the degree ofattesn- is bounded by
a constant and independentsaf Although the number of documents has grown, the
important factor for the complexity, namely the maximunesi the neighborhood of
a node, remains constant. Since the walk complexity is tiegsupled from the total
size of the graph, even a linear complexity is possible ififerr developments confirm
this conjecture [2].

The complexity of the cluster construction phase depende@mplementation of
the data structures holding the walk data. With a hash t#idesonstruction of a cluster
for a given document can be doneGrfnumber of walks visiting the documentl). If
the neighborhood size is constant, thus the length of thkesagsiconstant with growing
n, the number of walks that have visited a certain documensgsaonstant, otherwise,
it is O(log n): Assuming that the number of walks visiting a node more thaceds
negligible, a total ofO(n log n) nodes is visited during walks of lengthO(log n),
leading to an average 6i(log n) walks visiting a node.

Currently, the input data comprises library purchase hissdor about 1.8 million
documents in the catalogue out of which 800,000 have sufficlata for clustering.
They are connected by nearly 36 million edges, i.e. the geedegree of a node is
about 39. On an Intel dual Xeon machine with 2.4 GHz, the cdatfmn of 10 walks
per document, that is about 8 million walks in total, takesudl? days.
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4 Giving Recommendations

Once the clustering is complete, the recommendationswWallaturally from the clus-
ters. Since clusters contain per definition objects thatrarst similar to each other and
most dissimilar to non-members of the cluster, the recondatons for a given docu-
ment are the other documents in its cluster. The clustersrged by the walk context
method are not disjunctive. This means that, even if doctsnérand B are both in
the cluster for documertt, B is not necessarily in the cluster generated4and vice
versa. This property is highly desirable when giving recandations for books: Rec-
ommendations for bridge documents that belong to more thardomain (document
C' in our example) should contain books from all domains thataamcerned (e.g4
and B), while document4d normally has no connection t8 and thus should not be
listed in its recommendation list.

As mentioned, clustering with restricted random walks getes a hierarchy of
clusters, thus an optimal cutoff level has to be determinbathvwill be done in the
following section.

5 Reaults

As shown in section 3.3, there are several variables inflagribe quality and size of
recommendations. We have therefore tested the optimaliocatiin of measure and its
value with a training sample of 40000 documents (approxig&i% of the documents).

In lack of a human test group, we took the manual classifinatitheme used in
Karlsruhe as benchmark that follows the SWD Sachgruppend@®¢ma introduced
by the Deutsche Bibliothek. For each document in the trgisemple, we counted the
documents in the cluster that share at least one categoheimanual classification.
This is the number of correctly recommended documents. Meudefine the precision

as
number of correctly recommended documents

total number of recommended documents

(6)

Recall was not tested because for a recommender, qualitpie important than
quantity. Furthermore, the manual classification only esabout 55% of the docu-
ments in the university’s catalogue, so that the number ofid@nts that “should” be
recommended could not be determined without a consideeatale Due to this fact, the
precision as described tends to be rather too low, espgdiale consider the fact that
the quality of the manual classification system at Karlsuliffers strongly between the
topics.

It must be noted that the fine tuning of the above factors isgdna compromise
between precision on the one hand and the number of docuroentgich a cluster
can be generated as well as cluster size on the other. Thiecagen in Fig. 2. The
unadjusted levdl obviously is an inferior measure. Both of the adjusted kelielclose
to each other, with a slight advantage for This is not too surprising since asymptoti-
cally, they are equal.

The maximum precision that was reached by ugingvas 0.95 at level 0.95, but
then, recommendations could only be generated for 11 doatsoet of nearly 40,000.

precision=
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Fig. 2. Precision versus number of documents with a recommendation

On the other hand, in order to have recommendations for rhare30% (26,067 in this
case) of the documents, a precision of 67% is feasible.

A manual evaluation of these results by a human test grompiseparation in order
to verify these first results.

6 Conclusion and Outlook

We have presented a new method for generating recommenslatioarge data sets in
an efficient way. The precision and performance we were aldehieve are promising.

However, there remain some open questions for further relsedn important issue
that is currently in the focus of research is that of intehty updating the clusters
when new usages histories arrive by reusing as much as $&oin the existing
walks. Furthermore, a more intelligent decision for the benof walks that are started
from a node will be implemented in order to maximize coverafythe graph without
unnecessarily driving up computation time. For this puegpdsis also important to
better understand the asymptotic behavior of the algoridisnthe number of walks
approaches infinity.

Although Scldll [17] has tested this clustering method against otherseiveral
typical situations, it will be interesting to perform thisraparison also on our library
data or — due to computational complexity — on a subset tfereo
Acknowledgment. We gratefully acknowledge the funding of the project “R#K
by the Deutsche Forschungsgemeinschaft (DFG).
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