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Abstract: The Host Identity Protocol (HIP) is one of the more recent designs that challenge the current Internet 
architecture. The main features of HIP are security and the identifier-locator split, which solves the problem 
of overloading the IP address with two separate tasks. This paper studies the possibility of providing HIP 
services to legacy hosts via a HIP proxy.  Making a host HIP enabled requires that the IP-stack of the host is 
updated to support HIP. From a network administrator's perspective this can be a large obstacle. However, 
by providing HIP from a centralized point, a HIP proxy, the transition to begin using HIP can be made 
smoother. This and other arguments for a HIP proxy will be presented in this paper along with an analysis 
of a prototype HIP proxy and its performance. 

1 INTRODUCTION 

The current Internet is based on an over 20-year-
old architecture. That architecture has flaws - some 
more serious than others. Many of these issues have 
been addressed by tools and methods designed to 
patch the flaws of the architecture. Examples of 
these new designs are e.g. IPv6 that provides a new 
larger addresses space in place of the one currently 
used, and IPsec (Kent (1), 1998) that provides 
security in the insecure network. 

One of the more recent designs is the Host 
Identity Protocol (Moskowitz (1), 2004). HIP is still 
being researched and is not yet a complete product 
and thus not being used in a large scale. Considering 
that one of the main benefits of using HIP is secured 
communication, one can assume that HIP might 
appeal more to companies and organizations rather 
than the average home computer user.  When HIP 
will begin to be utilized by a larger user group than 
just the developers and some other interested parties, 
as it is today, ease of use will be one factor that will 
affect how well and wide HIP will spread. Enabling 
HIP in a host requires that the host is updated with a 
HIP enabled IP-stack. This might be a disadvantage 
of HIP when a network administrator is considering 
different methods of protecting the communication 
to and from the network. 

This paper studies the possibility of providing 
HIP services to hosts without having to modify 

them. Having legacy hosts communicating with HIP 
enabled hosts, using HIP, is possible with a HIP 
proxy. However, providing HIP to hosts via a proxy, 
with the actual HIP implementation residing outside 
of the host, puts some restrictions on the network 
environment. A HIP proxy scenario is shown in 
Figure 1. 

The paper is structured as follows; first some 
background information will be presented, with the 
focus on some of the problems of the current 
architecture. Different solutions for these problems 
will be presented, including HIP. Next follows a 
technical view of how HIP works and the reasoning 
for a HIP proxy. After that, the functionality of a 
HIP proxy is presented, followed by a look at the 
design and performance of a prototype HIP proxy. 
Then we look at how the prototype could be further 
developed, after which the conclusions are 
presented. 

 
 

 Figure 1: HIP proxy scenario 
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2 BACKGROUND 

Changing the current Internet architecture is a quite 
hot topic, and it has been that for some years 
already. The topic has been discussed in various 
papers, including the New Arch paper (Braden, 
2000) and the Plutarch paper (Crowcroft, 2003). 
There are many issues with the current architecture 
that have helped to recognize the need for a change. 
Maybe the most recognized issues include the lack 
of support for security by the IP protocol, address 
space depletion, the heavy load on routers and the 
overloading of the IP address to serve as both 
identifier and locator. Additionally, mobile hosts are 
becoming more common which adds demand for an 
always better mobility solution. 

To some of the aforementioned problems there 
are already working solutions; users who want 
security can utilize one of the many available 
security solutions e.g. IPsec, PGP, SSH or TLS. The 
utilization of the IPv4 address space has been 
improved with the help of Classless Inter-Domain 
Routing (CIDR). Also mobility is possible in the 
current Internet. Routers are heavily burdened 
because the size of the IPv4 address does not allow 
for much address aggregation. IPv6, with its four 
times bigger address size compared to IPv4, will 
improve the possibility for address aggregation. 
However, there is still no widely deployed method 
that provides an identifier-locator split. 

2.1 Why do we need a change 

So what is the big deal with using the IP address 
both as an identifier and a locator? The problem can 
be spotted by examining how the IP address behaves 
when a host is changing its topological position in a 
network, while remembering what qualities are 
necessary for an identifier and a locator respectively. 
Consider a host with the IP address IPA. The locator 
of the host, i.e. the information used to route packets 
to the host, is the IP address IPA. The same 
information is used to identify the host. If the host 
moves to another topological position the host has to 
change its address to the new address IPA'. When a 
host now wants to send packets to this host the new 
IP address, IPA', is used to route the packets to the 
host.  This means that the locator has changed to 
match the current location of the host, which is 
exactly how a locator should function. However, 
since the IP address serves as both an identifier and 
a locator the host has now been assigned a new 

identifier. This change is not welcome since having 
an identifier that can change frequently makes the 
identifier useless except for the short timeframe that 
it stays constant. A true identifier should stay 
constant, if not forever, at least for a very long time, 
in the range of years. 

Because the notion of an identifier is used in the 
Internet, it should also fill the requirements set for 
an identifier. Namely that it is constant and uniquely 
identifies a host regardless of where in the network 
the host is located. This makes the IP address an 
unfit candidate for an identifier.  What is needed is 
another coexistent address space, actually an 
``identifier space'', from which hosts are assigned an 
identity. Another possibility could be something 
along the lines of what was suggested in the GSE 
proposal (Crawford, 1999); part of the IP address is 
used for identifying the host while the rest is used as 
a locator for the host. In this case the identifier part 
has to stay constant when the host moves in the 
network and updates the locator part to match the 
current location of the host. 

2.2 The HIP solution 

The Host Identity Protocol is one of the new designs 
that, amongst other things, target the identifier-
locator split. In addition, HIP also provides security, 
mobility and multi-homing. All the features 
provided by HIP are based on the solution for the 
identifier-locator split. 

HIP separates the identifier from the locator by 
introducing a new name space for identifiers. The 
entities in that set are called Host Identities (HI) and 
are of variable length. A HI is the public key of an 
asymmetric key-pair, which is used to provide 
security in HIP. Because the HIs are of variable 
length it is difficult to use them as such in HIP, so 
instead a 128-bit hash over the HI, called a Host 
Identity Tag (HIT), is used. When operating in an 
IPv4 network a 32-bit hash over the HI, a Local 
Scope Identifier (LSI), is used. Because of its length, 
the LSI cannot be considered to be globally unique. 
When a HIP enabled host sends a packet to another 
HIP enabled host the packet is sent to a HIT, or an 
LSI respectively, but the packet is transported using 
the locator i.e. the IP address. 

The use of HITs and LSIs is made possible by 
introducing a new layer to the IP-stack. The HIP-
layer finds its place between the internetworking 
layer and the transport layer, and is sometimes 
referred to as layer 3,5. At the layers above the HIP-
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layer HITs, or LSIs, are used instead of IP addresses. 
At the HIP-layer a translation takes place; from 
HITs or LSIs to IPv6 or IPv4 addresses, or vice 
versa. In the remaining layers the IP addresses are 
used. Using HIP, the Host Identifier (HIT or LSI) of 
a host is always constant as it should be, and the 
locator can change when the peer moves to another 
position. 

2.3 Other similar solutions 

HIP is one of the more complete solutions that 
provide the identifier-locator split. However, there 
are also some other proposals that target the same 
problem. In this subsection three other solutions will 
be presented: the Forwarding directive, Association, 
and Rendezvous Architecture (FARA) (Clark, 
2003), PeerNet (Eriksson, 2003) and the Internet 
Indirection Infrastructure (I3) (Stoica, 2002). 

FARA is a framework that can be used when 
designing a new architecture. The FARA model is 
divided into two layers; the upper layer contains the 
communicating entities and the communication 
endpoints, the lower layer handles the packet 
forwarding. The communication link between two 
entities is stateful and is called an Association. Each 
Association is identified by a locally unique 
Association ID (AId). When an entity moves its 
AIds stay constant while the information used to 
forward the packets to the entity changes. It is easy 
to draw some parallels between this and how HIP 
uses constant HIs while the IP address can change to 
reflect the current position.  In the FARA paper 
(Clark, 2003) HIP is actually suggested as 
something that could be used in a FARA 
architecture. 

PeerNet is based on peer-to-peer thinking. The 
hosts are located as leafs in a binary tree, with the 
path from the root presenting the address of the host.  
When a new host attaches to the network it asks one 
of the hosts in its vicinity for an address. The asked 
host splits its address space into two and assigns one 
of them to the new node and keeps the other for 
itself. The hosts also have an identity that stays 
constant regardless of node movements. PeerNet 
uses distributed peer-to-peer routing with each host 
storing some routing information, i.e. identity-to-
address mappings. PeerNet is not a ready solution, it 
does have the identifier-locator split, but security 
issues have not been addressed. 

The I3 design introduces some new elements to 
the network, the I3 servers. To be able to receive 

packets hosts have to register their identity and 
current locator into an I3 server. This is called 
inserting a trigger.  The trigger has a limited lifetime 
and thus it has to be updated periodically by the host 
if it wishes to continue to receive packets via it. In I3 
packets are sent to identities and the sent packet 
searches the I3 servers for a trigger that matches the 
destination identity. Once a match is found the 
destination of the packet is changed for the IP 
address found in the trigger.  By updating the trigger 
I3 supports mobility, and by letting multiple hosts 
register with the same identity a multicast property 
is achieved. But just as PeerNet, I3 is not a complete 
solution. The biggest concern of I3 is the lack of 
security. To provide security for I3 a combination of 
HIP and I3, called Hi3, is being researched 
(Nikander, 2004). 

2.4 Problems with having a new 
architecture 

Even if these new designs might sound very good, 
creating them is only part of the job, getting the 
design deployed is also a big challenge. Deploying a 
new architecture is not the same as deploying a new 
standalone, e.g. security solution. Deploying the 
design in a small test network which one has full 
control over is easy, but when the target is a global 
public network, the Internet, there is not really any 
good way to get it done. The problem of deploying 
e.g. HIP is similar to getting IPv6 deployed globally. 
An ideal solution would be to get all of Internet 
updated by the flick of a switch, moving from an all 
IPv4 network to an all IPv6 network in a neglectable 
time interval. However, this is not possible, not for 
IPv6 nor HIP. An update of this proportion will 
proceed incrementally, requiring some sort of 
compatibility between the new and the old 
architecture. Deploying HIP is not as difficult as the 
IPv6 problem since HIP enabled hosts can still 
communicate with legacy hosts using regular IP. 
However, to truly benefit from all the features of 
HIP, it would be desirable that as many hosts as 
possible were HIP enabled. 

3 HIP 

To enable HIP in a host the IP-stack of the host has 
to be updated to a HIP modified one. An asymmetric 
key-pair has to be generated and the public key will 
serve as the identity of the host, with hashes of the 
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key resulting in HITs and LSIs. To initiate a HIP 
connection with another HIP enabled host the HIT 
of the peer has to be obtained. This can be done 
from a HIP modified DNS or other similar lookup 
service. 

The creation of a HIP connection between two 
HIP enabled hosts is called the HIP base exchange 
(Moskowitz (2), 2004) and it is depicted in Figure 2. 
When the Initiator wants to establish a connection it 
sends an I1 packet to the Responder. The packet 
contains the HIT of the Initiator (HITI), and if the 
HIT of the Responder (HITR) has been obtained it is 
also included in the message. If the Initiator does not 
know HITR it is set to NULL in the I1 packet. This is 
called opportunistic mode HIP. The I1 packet is 
actually just an initiation message for the 
connection. 

Figure 2: The HIP base exchange 
 
The Responder responds with an R1 packet 

which contains the HITs used in the I1 packet, the 
HI of the Responder and a challenge. If the Initiator 
is attempting opportunistic mode HIP the Responder 
has now added its HIT to the packet instead of the 
received NULL HIT. The R1 packet also initiates 
the Diffie-Hellman (Rescorla, 1999) exchange and 
gives the preferences of the Responder in respect of 
which IP Encapsulating Security Payload (ESP) 
(Kent (2), 1998) mode to use. The supported 
integrity and encryption algorithms are also 
presented. The challenge in the packet is a puzzle 
that the Initiator has to solve to prove that it is 
serious about creating a connection. The Responder 
can have in advance prepared R1 packets to ease its 
load, while the puzzle requires the Initiator to do 
heavy calculations. This makes connection initiation 
expensive and is thus a form of Denial of Service 
(DoS) protection. 

When the Initiator has solved the puzzle it sends 
an I2 packet to the Responder. The packet again 
contains the two HITs and now also the solution to 
the puzzle. Also the HI of the Initiator is included, it 
is encrypted using the selected algorithms and 
generated keys. Based on the information that the 
Responder receives in the packet it can decrypt the 
HI. The Responder also receives the Security 
Parameter Index (SPI) to use when sending packets 
to the Initiator. 

The last packet of the HIP base exchange, the R2 
packet sent to the Initiator, contains the SPI that the 
Initiator should use along with the two HITs.  
Similar to all but the first packet of the base 
exchange, the R2 packet contains a digital signature, 
and in addition a HMAC (Krawczyk, 1997) 
calculated over the packet. Besides that, also other 
consistency checks are done on each packet, 
including checking that the received HITs are the 
correct ones. The result of the HIP base exchange is 
a pair of IPsec ESP security associations (SA). After 
the base exchange all traffic between the Initiator 
and the Responder is ESP protected. 

The four packets used during the base exchange 
(I1, R1, I2, R2) are HIP specific packets. Apart from 
these packets there are also some other HIP specific 
packets of which the Update packet is the most 
important one. The Update packet is used for 
signaling rekeying when the old SA needs to be 
replaced, e.g. if the ESP sequence number is getting 
too big. The Update packet is also used for handling 
location updates by sending location update 
messages. 

The security provided by HIP is basically very 
similar to IPsec without IKE.  The HI of a host, and 
the corresponding private key, are used for 
authentication purposes and for negotiating security 
parameters and SAs. The SAs are established 
between two HITs, so when sending a packet the SA 
is located based on the HITs found in the outgoing 
packet. When receiving a packet the SA is located 
based on the SPI, and the HITs for the connection 
are found from the SA. 

4 WHY A HIP PROXY 

The difficulty of deploying a new architecture was 
mentioned earlier; all hosts in a global network 
cannot simultaneously be update to support a new 
architecture, the migration to a new architecture will 
take time. HIP does not need to spread to all hosts in 
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the Internet, and it probably never will, but the wider 
it spreads the more useful HIP is for its users. A HIP 
proxy that makes it possible for a HIP host to 
communicate with a legacy host, using HIP between 
the HIP host and the HIP proxy, could help to 
promote HIP. The more possibilities there are for 
using HIP the more appeal it will have. The problem 
with a HIP proxy is that if it is located in a public 
network the security features of HIP are rendered 
useless. The connection between the proxy and the 
legacy host is not protected in any way. If one would 
like, some other form of security could of course be 
applied between the HIP proxy and the legacy host. 

To be able to benefit from the security 
functionality provided by HIP, when using a HIP 
proxy, the proxy would have to be situated in a 
secure network.  One likely scenario might be a 
private network, e.g. the internal network of a 
company. By having a HIP proxy at the border 
between the private network and the Internet, the 
users of the private network could contact HIP 
enabled hosts in the Internet using HIP. Because the 
private network is considered to be secure the only 
difference of this scenario, compared to two HIP 
enabled hosts communicating with each other, is that 
the legacy host cannot take advantage of all the 
features provided by HIP, e.g. HIP mobility. 

If the hosts of a private network do not need all 
the features provided by HIP, a HIP proxy might 
even be considered the preferred alternative 
compared to enabling HIP in all the hosts. Enabling 
HIP in all hosts might be considered to generate too 
much work compared to having a HIP proxy 
solution. With a static network configuration the 
work estimates might actually be correct. However, 
most networks are not static, and having a HIP 
proxy in a dynamic network will generate excess 
work in the form of keeping the proxy 
configurations up-to-date. A HIP proxy is not the 
preferred solution but it is well suited as a stepping-
stone when going from an all legacy network to an 
all HIP network. 

5 THE HIP PROXY PROTOTYPE 

As a proof of concept a HIP proxy prototype has 
been implemented. The implementation was done 
for FreeBSD 5.2, and tested with the HIP 
implementation developed at Ericsson Finland 
(http://hip4inter.net). Besides implementing the HIP 
proxy application also the kernel of FreeBSD had to 

be modified; a new feature, divert sockets for IPv6, 
had to be implemented. To perform its task the 
proxy utilizes divert sockets and the firewalls (ipfw 
and ip6fw) of FreeBSD. The network environment 
where the proxy operates is between two small 
LANs, one acting as a private network containing 
the legacy hosts and the other acting as the Internet 
containing the HIP enabled hosts. If the proxy was 
to function in one network in which there are both 
kinds of hosts the legacy hosts would have to be 
configured to route all their packets via the HIP 
proxy. 

5.1 Functionality of a HIP proxy 

When looking at the HIP proxy as a host in the 
network its task is to serve as the endpoint for HIP 
associations between itself and HIP enabled hosts. 
HIP hosts connected via it believe that they are 
communicating with the legacy host using HIP while 
the legacy hosts believe that they are communicating  

with the HIP host using plain IP. For the 
communicating endpoints the HIP proxy is invisible. 
The proxy itself can be seen as a host that performs 
translation between the two communication formats; 
plain IP and HIP. 

When a legacy host wishes to communicate with 
one of the HIP enabled hosts it queries DNS for the 
IP address of the peer. The query travels through the 
HIP proxy and on to a HIP modified DNS in the 
Internet. The reply contains the IP address and the 
HIT of the HIP host. When the reply passes the 
proxy it caches the IP-HIT mapping for future use 
when it possibly has to initiate a HIP base exchange 
with the host. The legacy host receives the IP 
address and can now use it to contact the HIP 
enabled host. HIP enabled hosts can contact legacy 
hosts via the proxy if the IP address of the proxy, 
and the HITs assigned to the legacy hosts, are 
registered into DNS. Thus a HIP enabled host will 
receive an IP address and a HIT, as expected, when 
querying the information about one of the legacy 
hosts. 

When a packet passes through the HIP proxy 
host the packet must be diverted from its path and 
sent to the HIP proxy application. If the packet is on 
its way from a legacy host to a HIP enabled host the 
proxy checks if there is an SA available for the 
connection. If a matching SA is found the packet is 
sent out using the SA. Otherwise the proxy has to 
initiate the HIP base exchange to establish SAs for 
the connection. Using the IP-HIT mapping it has 
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gotten from the DNS query, and the IP address of 
the legacy host along with the HIT assigned to the 
legacy host, the proxy can initiate the base 
exchange. When the HIP association has been 
established the packet sent by the legacy host can be 
sent to the HIP enabled host and the communication 
between the peers can begin. When a packet is 
received over an SA, from a HIP enabled host, the 
proxy decrypts the ESP packet and forwards it as a 
plain IP packet with the IP addresses of the peers. 
The packet is then sent to the legacy host whose IP 
address was found based on the destination HIT. The 
connection initiation is depicted in Figure 3. 

When a HIP enabled host initiates a connection 
to a legacy host it uses the information it has 
received from DNS. The HIP host believes that it is 
connecting to the legacy host, although the actual 
HIP connection is established to the HIP proxy. 
When the SAs have been established the HIP host 
begins sending packets over them. The HIP proxy 
converts the received packets to plain IP packets and 
forwards them to the correct legacy host. 

5.2 The prototype design 

The prototype HIP proxy does not function 
exactly as described in the previous section. We did 
not have a HIP enabled DNS so the IP-HIT 
mappings of both the legacy hosts and the HIP 
enabled hosts were added to a configuration file for 
the HIP proxy The proxy reads the configuration file 
and stores the HIT-IP mappings into two linked lists, 
one for legacy hosts and one for HIP enabled hosts. 
Apart from the DNS issue the HIP proxy works as 
described. 

To get the received packets diverted to the proxy 
application we use the IPv4 and IPv6 divert sockets 
and the firewalls. Basically we tell the firewalls to 

divert all packets received from the private network 
except for broadcast packets and other packets that 
we intuitively know that are not meant for the proxy. 
This will result in that all connection initiations from 
the legacy hosts, and the subsequent packets of the 
connections, go through the proxy. To receive the 
ESP packets sent from the HIP enabled hosts we tell 
the proxy to divert all packets that have an address 
prefix of 01bin for both source and destination 
addresses. This is a characteristic of HITs; a HIT 
always has the prefix 01bin (there is also a secondary 
format for HITs with a 10bin prefix). Even if the 
packets have IP addresses in the IP header while 
they travel the Internet, IPsec processing, where the 
IP addresses are replaced by HITs, happens before 
the firewall rules are checked. Finally, to allow HIP 
initiations from the HIP host, we tell the firewall to 
allow all traffic that uses the HIP protocol, i.e. the 
packets for the base exchange and the other HIP 
specific packets such as the Update packet. 

The structure of the application is divided into 
two parts; in the first part the proxy is initialized, the 
second part consists of a read/write loop where the 
packets are processed. During the initialization part 
the configuration file is read and the mappings found 
in it are recorded. Before a HIP base exchange can 
begin the Initiator has to have a HIP context for that 
particular connection. A context consists of the 
Initiator HIT along with the HIT and IP address of 
the responder. The prototype creates the needed HIP 
contexts after the configuration file is read. Before 
the read/write loop begins the proxy also creates the 
divert sockets so that it can receive packets. 

In the read/write loop the proxy waits for packets 
diverted to it. Once the proxy receives a packet it 
examines the source and destination addresses of the 
packet. Using the two linked lists with HIT-IP 
mappings the proxy can conclude where the packet 

Figure 3: Connection initiation via a HIP proxy 
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is coming from and where it is going to, e.g. from 
the legacy network to the HIP network. If either of 
the addresses is not found in the linked lists the 
proxy cannot process the packet correctly, in that 
case the packet is forwarded unchanged by the 
proxy. If mappings for both addresses are found, and 
both addresses in the packet are found to be either 
HITs or IP addresses (a mix of one IP and one HIT 
is not accepted, it indicates an erroneous packet), the 
proxy changes the IPs for HITs or vice versa. After 
recalculating the checksums the packet is sent out 
again. If the packets are going to the legacy host 
they are forwarded via the output handling to the 
private network. If the packet is going to one of the 
HIP hosts it will have HITs as addresses in the IP 
header. In this case the packet will be sent to IPsec 
handling. If no SA is found for the specific 
connection the HIP daemon is signaled to perform 
the HIP base exchange after which the packet is sent 
out utilizing the newly created SAs. 

Before the read/write loop starts over again the 
proxy checks if the configuration file should be re-
read. This makes it possible to add information 
about new hosts without restarting the proxy. The 
prototype uses a very basic method for finding out if 
the file should be re-read; for each n packets the 
configuration file is re-read. When testing this 
feature, the value for n was set to 10. The value 
should be adjusted based on how heavy traffic there 
is through the proxy and the length of the list of 
hosts entered into the file. With heavy traffic n 
should be increased so that the re-read does not 
happen very frequently. Also with a long list of 
hosts n should be increased because with a longer 
list the updating of the linked lists takes longer. A 
more appropriate solution would be to check if the 
file has been updated, and only when an update has 
occurred should the file be re-read. 

5.3 Performance 

To measure how the HIP proxy prototype performs 
some tests were conducted. The first test was done 
to check how having the proxy in the path of the 
packets affects the round trip times (RTT). First the 
round trip times for ping6 were measured as an 
average over 20 packets with the packets going 
through the proxy but not being processed by it. To 
get values to compare against the average round trip 
times were also measured for the case when the 
packets did not have to go via the proxy, the host 
with the HIP proxy just forwarded the packets.  

Finally we measure how the use of the HIP proxy, 
and having it process packets affected the round trip 
times. The results from these measurements are 
presented in Table 1. 

It can be concluded from the two first entries that 
introducing the proxy does add delay; with the proxy 
we get approximately 12% longer round-trip times. 
This is something that can be expected since having 
the packets go via the proxy adds processing on the 
path. Having to pass a packet to an application in 
user space, compared to only handling it in kernel 
space, adds delay. 

  The last entry in Table 1 concentrates on how 
applying IPsec ESP to the packets affect the delay. 
Based on the result we can see that when the HIT-IP 
mappings are found in the linked lists of the proxy 
the round-trip time increases approximately by 22% 
compared to having he proxy sending the packet to 
output handling without any processing. When we 
compare the delays of sending packets without using 
the proxy and the case when the proxy is used and it 
processes the packets we can see that the increase in 
delay is approximately 36%. This increase in delay 
includes both the added delay of having to send the 
packet to user space, approximately 0,070ms, and 
the delay that results from performing cryptographic 
functions, approximately 0,150ms. The by the HIP 
proxy added delay is mostly a result of doing the 
cryptographic functions on the data. This is 
something we cannot affect; if we want security it 
will cost us time. The total delay added by the proxy 
is not at an alarming level, and is as such acceptable. 

Another interesting aspect of the performance of 
the proxy is how the amount of entries in the linked 
lists affects the delay. In the measurements 
presented in Table 1 there were a total of three 
entries, two in the HIP hosts list and one in the 
legacy hosts list. In the next set of measurements we 
had first 10 then 100 and finally 1000 entries per list. 
The correct information was situated last in the 
respective list so that the proxy would have to go 
through all of the lists. For each packet both the 
linked lists have to be examined. The results from 
these measurements are presented in Table 2. 

      From the measured values we can see that if 
we add enough entries to the lists it will show in the 
round-trip times. But since the prototype proxy is 
not meant for huge networks the delay added by 
looking up mappings from long lists should not be 
an issue. The values in Table 2 differ somewhat 
from the corresponding values in Table 1. The 
reason for the differing values is that the 
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measurements were performed at different times, so 
the load on the network was different. 

When the proxy reads the host information from 
a configuration file, as is the case with this 
prototype, the amount of hosts should be kept small 
to keep the configuration file manageable. If some 
automatic updating procedure is implemented it 
allows for more hosts. Still, the delay caused by 
having to look up host information from very long 
lists will sooner or later add too much delay. 
However, when the amount of hosts configured into 
the proxy reaches that level it will probably be the 
amount of traffic that the proxy has to handle that 
will be the performance bottleneck, not the delay 
from looking up the correct mappings. 

6 FURTHER WORK 

In the previous section we concluded that 
approximately a third of the added delay that results 
from using a HIP proxy compared to plain IP is a 
result of the proxy application. This is one aspect of 
the proxy that could be improved; by moving the 
application from user space to kernel space the delay 
induced by the proxy could probably be decreased. 
Overall the proxy still performs well and as 
expected. With a small set of hosts the delays are 
kept at an acceptable level, keeping the RTTs in 
roughly the same range as for legacy connections. 
However, one must remember that a HIP proxy is 
only a solution for a small set of nodes. When the 
amount of nodes configured into the proxy gets too 
big, either a second proxy should be introduced, and 
the load balanced between the proxies, or then the 
legacy hosts should be made HIP enabled. When a 
HIP modified DNS is available it will increase the 
limits of a HIP proxy by being able to dynamically 
add HIT-IP mappings when they are needed. Also 
old mappings that are considered obsolete can be 
deleted since they can be re-fetched from DNS if 
necessary. The amount of legacy hosts that the proxy 
can serve will still be a limiting factor. 

If the HIP proxy is situated in a public network 
the security provided by HIP is in effect useless 

since all the information also travels unencrypted in 
the network, namely between the proxy and the 
legacy host. This is quite alright as long as both 
parties are aware of this. However, when using a 
HIP proxy the HIP enabled host does not know that 
it is communicating with a proxy but believes that it 
is actually communicating with another HIP enabled 
host. This puts the HIP enabled host at a 
disadvantage, and it is a problem that needs to be 
solved; the HIP enabled host must know when it is 
communicating via a HIP proxy so that it knows that 
the information it sends might not be secured all the 
way to the actual endpoint. 

A last issue that will be mentioned regarding the 
HIP proxy is a problem that arises when the HIP 
host, that is using the services of the HIP proxy, is 
mobile.  When a HIP host is mobile and moves to 
another location, and thus gets a new locator, it 
informs its communication parties of its new 
location. With two HIP enabled hosts this works 
well. However, when one of the endpoints is a HIP 
proxy the location update message sent to the proxy 
modifies established SAs as necessary, but the 
information does not reach the proxy. If a 
connection was established between a legacy host 
and the HIP host before the location change, the 
connection will continue to work even after the HIP 
host has moved. If another legacy host now tries to 
initiate a connection to the mobile host, using its 
new locator, the connection will not be established 
since the proxy has not gotten the new locator of the 
mobile HIP host. This can be solved by updating the 
proxy configuration file with the new information of 
the mobile HIP host. This works well if there are no 
connections established from legacy hosts to the old 
locator of the HIP host. However, if there still are 
connections to the old locator the result is that the 
legacy host using the old locator of the mobile HIP 
host will begin receiving packets from the HIP host's 
new locator without knowing that it actually is the 
same host. A solution for this problem could be that 
the HIP proxy would keep a record of previous 
locators of each HIP host, and state information for 
each connection. Using this information all 
connections could be maintained. All this of course 
adds delay to the system. The solution presented 

Table 2: The effects of serving many hosts 
Hosts/list Avg. RTT 
10 0,676ms 
100 0,705ms 
1000 0,770ms 

Table 1: How the proxy affects round-trip times 
Using 

proxy 
Using HIP Avg. RTT 

No No 0,624ms 
Yes No 0,698ms 
Yes Yes 0,851ms 
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here is probably not the optimal one and some more 
research in this area is needed. 

7  CONCLUSIONS 

The HIP proxy prototype was constructed as a 
proof-of-concept for a HIP proxy.  The proxy 
performs well and fills its tasks. However, as 
mentioned in the previous section there are still 
many areas in which the proxy may, and should, be 
improved. The preferred solution for using HIP is of 
course to have HIP enabled hosts. However, a HIP 
proxy might be a good tool to help HIP get 
spreading. The HIP proxy prototype described in 
this paper is probably not something that should be 
used as such for a HIP proxy. However, it might be a 
good starting point for developing a new and 
improved version that better fits the requirements of 
a HIP proxy. 
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