
A SECURE FRAMEWORK FOR MANAGING TRANSACTIONAL
PROPERTIES OF BUSINESS OBJECTS

Charles A Shoniregun
School of Computing and Technology,

University of East London
Longbridge Road, Barking Campus,

Dagenham Essex,
RM8 2AS, UK.

Ziyang Duan, Subhra Bose
Reuters America Inc.

3 Times Square, 18th Floor
New York, NY 10036

 Alex Logvynovskiy
Business,Computing and Information Management (BCIM),

London South Bank University
Borough Road,
SE1 0AA, UK.

Keywords: ACID, data modelling, NML, STM, web service, XML.

Abstract: A business object is a set of well-structured, persistent data associated with some predefined transactional
operations. Maintaining the transactional correctness of business objects is very important, especially in
financial applications. The object’s correctness has to be guaranteed at any time during the lifecycle of the
object. This requires that each simple operation is correct, i.e., satisfies the ACID property, and the object is
in acceptable states before and after each operation. The correctness of each simple transaction can be
secured and guaranteed by using a transactional database or a transaction monitor. However, the combined
effect of executing a set of simple transactions may violate some business rules and leave the object in an
unacceptable state. The proposed model is based on Heirarchical Statechart to specify the allowable states
and transitions on a business object during its life cycle. The paper describes an XML-based framework to
support application development based on this model. The framework includes an XML language for model
specification, a set of tools for model definition, testing and simulation, and a set of APIs to provide
business object management functionalities at runtime. The model and framework allows secure
transactional properties of a business object to be defined formally and declaratively, and provides
correctness guarantees at runtime. The framework facilitates fast product development and integration in a
service-oriented architectural model, and provides great flexibilities for persisting data in either XML or
relational databases. The experience of how to use the framework in developing a financial transactions
system and the tradeoffs is based on comparison between XML and relational databases.

57
A Shoniregun C., Duan Z., Bose S. and Logvynovskiy A. (2005).
A SECURE FRAMEWORK FOR MANAGING TRANSACTIONAL PROPERTIES OF BUSINESS OBJECTS.
In Proceedings of the Second International Conference on e-Business and Telecommunication Networks, pages 57-65
DOI: 10.5220/0001407200570065
Copyright c© SciTePress

1 INTRODUCTION

Trading systems generally involve complex business
logic and data transactions. The business logic
reflects the business rules which might be different
from one system to another depending on the target
market, geographic location of the market and
traders using the systems. For example, the trading
rules for a stock market are different from those for
a bond market, and the New York stock market has
different rules from the Tokyo stock market.
Business rules might change as new requirements
arise from business practice. In addition, a trading
system needs to accommodate many concurrent
users and handle heavy volumes of transactions,
each of which might involve a large amount of
money. For example, billions of shares change their
hands at markets such as NYSE and NASDAQ
every day. Therefore, trading systems are required to
be highly scalable, reliable, and with high
performance guarantee. The follwoing example
illustrates a typical trading system, where a trading
process contains the following stages:

• Initiation: two traders find each other (using
some search facilities) with a matched trading
interest (e.g., one party wants to sell some stock
shares and the other is interested in buying some
shares of the same stock.) and start to contact
each other. \item

• Negotiation: two traders negotiate on the detail
of the trade until a mutual agreement is reached.

• Settlement: the back-office of each trader’s
institute confirms the deal and settles the
transaction.

The trading system coordinates and monitors the
whole trading process. The detail of each step is
logged and the trading history can be queried
afterwards. The system is integrated with other
information systems to provide traders with
information such as real-time market data, and
integrated with participating institutions’ back-office
systems for transaction settlement.

The Figure 1 illustrates the example represented
in a commonly used workflow notation
(Hollingsworth, 1995), in which boxes represent
tasks, edges represent the execution control flows, ⊕
represents or-join, ⊗ represents and-split and and-
join.

There are several challenges in developing such
a system:

• Business rules specification. Business rules are
generally complex and can only be understood
by business experts, who do not necessarily
have any technical background. Even worse, no
single person might have a complete picture of
all business requirements. This imposes a
challenging problem on system designers and
developers, demanding them to spend a
significant amount of time on understanding and
documenting business processes before
development can be started.

• Software reusability. With the adoption of OOD
(Booch et al, 1999; Coad and Nicola, 1993) and
component-based development methodologies
(Buschmann et al, 1996), trading systems can be
designed in a more structural way and
Reusability is improved. However, since
underlying trading data and business logic are
usually different from one trading system to
another, many components still need to be
modified to reflect new data models and
business requirements before they can be reused
in the new system.

• Business rules evolvement. Conventionally,
business rules are hard coded in different
software components. When business rules
evolve, those software components have to be
updated to reflect the new requirements. To
make things worse, once the business rules are
dispersed and encoded into multiple software

Figure 1: A negotiation workflow

ICETE 2005 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

58

components, they become incomprehensible
and intractable, making maintenance and
upgrade difficult.

• System integration. A trading system is often
deployed in several different companies and
needs to be integrated with their existing
systems. Each company has its own legacy
systems and regulations to do business (such as
security requirements, preferred software and
hardware configurations, etc.). It is important to
provide an interoperable interface to facilitate
system integration.

To address the above problems, an XML-based
framework for trading system development was
introduced. The framework provides the following:

• A Negotiation Modelling Language (NML) is
introduced to model business rules.} NML is an
XML-based language that is friendly to both
business people and system developers. At the
same time, it enables one to specify business
rules for a trading system precisely.

• The specification of business rules is separated
from its implementation. Specifically, business
rules are specified in NML declaratively as a
business process, and an engine is developed to
coordinate the execution of business processes
based on their NML specifications. This
separation promotes software reusability and
supports business rules evolvement elegantly.

• The data model of a trading system is separated
from its implementation. The data model is
specified in XML Schema, and stored in a
relational database for persistence and query
support. To enhance interoperability with other
trading systems, FpML (Financial products
Markup Language) (FpML.org, 2001), an
industry standard protocol for complex financial
products, is used to specify the negotiation
detail of a business process. The separation of
the data model from its implementation
promotes software reusability since two trading
systems might only differ in their data models,
and one can develop a new trading system by
changing only the data model specification.

• Interoperability is facilitated in the form of web-
services. The adoption of web-services interface
greatly facilitates interoperability and the
integration of a trading system with information
systems at different participating companies and
organisations.

With the standardisation and maturity of many
XML specifications and tools, it is expected to adopt
more industry standards in areas such as web service
orchestration and XML data query and update.

2 RELATED WORK

Workflow systems provide a way to separate the
control logic from the system components, and the
control logic is specified at a high level. workflows
are computational models of business processes
(Hollingsworth, 1995). A Workflow Management
System (WFMS) provide a set of tools to specify,
manage and coordinate the execution of business
processes as workflows. Many workflow systems
have been developed for office automation and
document sharing (Schael, 1998; Mohan, 1997).
During the past several years, different workflow
systems have been developed, such as Exotica,
ConTract and Mentor (Mohan et al, 1995; Reuter
and Schwenkreis, 1995; Wodtke et al, 1996).

Though workflow models are intended to be
general for all kinds of business processes including
trading processes, many current workflow products
are only available for special markets such as health
care, telecommunication, etc. They generally are
intended for end-users in a special application
domain, but not for developers to build new
applications in a different domain. This paper has
also looked at some commercial general-purpose
workflow systems, such as IBM’s Flowmark,
Tibco’s BPM and Microsoft’s Biztalk. These
software shows that workflow-based integration
systems are promising. However, it was found that
these systems are not suitable for large-scale trading
applications either because they do not meet the
performance requirements or they don’t provide the
necessary functionalities.

A SECURE FRAMEWORK FOR MANAGING TRANSACTIONAL PROPERTIES OF BUSINESS OBJECTS

59

A state transition model was used to specify
business rules rather than using a general workflow
notation. A workflow model is more powerful to
model complex concurrent systems with long-lived
transactions. A trading process, as a whole, can be
viewed as a long-lived transaction that may last for
days or months. However, each step in the process is
a short transaction, and the whole process can be
viewed as a sequence of state-based, event-driven
short transactions. Thus, the system can be easily
modelled as a state-transition machine. It has been
proved that the state transition model is expressive
enough for most trading systems. Trading systems
usually must have high throughput. The state
transition model is simpler, and an execution engine
based on it can be implemented more efficiently,
without the overhead to handle long-lived
transactions. In addition, a state-transition model is
unambiguous and easily understandable to both
business and technical people.

XML has appeared as a new standard for data
representation and exchange over the World-Wide-
Web. XML Schema is used to specify semi-
structured data types in XML. Many works have
been done on understanding semi-structured data
types and their relationship with relational data
(Milo et al, 2000; Hosoya and Pierce, 2000;
Fernandez et al, 2005). There exist several native
XML databases, which do not provide the required
efficiency and scalability that a trading system
requires.

The Web-services based on SOAP and WSDL
are widely supported in industry recently. Many
standards have been proposed for web-service based
business process orchestration, such as BPEL4WS
(IBM, 2002) by IBM, Microsoft, etc. In the model,

communications among distributed components also
communicate through WSDL based web-service
interfaces. However, NML mainly focuses on
tracking the state transitions within a business
process; whereas BPEL4WS focuses on the interface
definition and service orchestration of a business
process.

3 AN OVERVIEW OF THE
FRAMEWORK

The negotiation engine is the main component of the
application server tier. It provides the following
functionalities: (1) defining and managing the
negotiation models; (2) coordinating the execution
of negotiation processes; (3) querying negotiation
data; and (4) administrating the system. The
functionalities is available to clients via a set of
APIs.

An overview of this framework is presented in
Figure 2, which shows three-tier architecture: the
client tier, the application server tier, and the data
storage tier.

The data storage tier uses a relational database at
the back end. The negotiation engine retrieves and
manipulates data in the data storage through the
Data Access Component.

The framework provides a business logic
specification language, Negotiation Modeling
Language (NML). The model specification is based
on state transition diagram, with additional
information such as negotiation participants and
their roles. A negotiation engine uses the model to

Figure 2: System architecture

ICETE 2005 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

60

manage the negotiation process execution. A
simplified example is given below:
 <negotiation-model>
 <roles>
 <role>Active</role>
 <role>Passive</role>
 </roles>
 <states>
 <state>Start</state>
 <state>Contacting</state>
 <stubState>Contacting</stubState>
 ...
 </states>
 <transitions>
 <transition>
 <name>Initiate</name>
 <allowed_source_roles>
 <role>Active</role>
 </allowed_source_roles>
 <assertion>...<assertion>
 <state_from>Start</state_from>
 <state_to>Contacting</state_to>
 <new-roles>
 ...
 </new-roles>
 <notifications>
 <notification>...<notification>
 <notifications>
 <action>...</action>
 </transition>
 </transitions>
 </negotiation-model>

In general, each negotiation model specification
has the following elements:

• Roles: The allowed roles in a trading process.
Each role has a distinct name.

 <roles>
 <role>Talker</role>
 <role>Listener</role>
 </roles>

• States: The set of states in the state transition
diagram. There must be a start state named
Start.

 <states>
 <!-- State name -->
 <state>Start</state>
 <state>Initiating</state>
 ...
 </states>

• Transitions are a set of legal transitions in a
process. A simplified transition specification
contains the following elements: state_from is
the start state of a transition. state_to is the
target state of a transition. Assertion is a
Boolean XPath expression on the data model
whose value decides if the transition is enabled
or disabled. Action specifies a sequence of
actions can be performed if a transition is
successful. Such actions can be updating part of
the data, or making a web service call. Name is
the name of a transition. Allowed_source_role
and allowed_dest_role are allowed roles for the
source and destination party in a transition.

New_role is the role that a participant will take
after the transition. Notification_rule specifies
the reference to an XML file that actually
defines the notification rule, which is discussed
later.

For example, the following XML fragment
specifies a transition called Initiate, which transits
the negotiation instance from the Start state to the
Initiation state when invoked. In addition, it can
only be invoked by a party with role Talker, and the
destination party with role Listener. If the transition
finishes successfully, the negotiation instance will be
in Initiation state, and the talker and the listener
switch their roles.
<transition>
 <name>Initiate</name>
 <state_from>Start</state_from>
 <state_to>Initiating</state_to>
 <allowed_source_role>Talker</allowed_source_rol
e>
 <allowed_dest_role>Listener</allowed_dest_role>
 <source_new_role>Talker</source_new_role>
 <dest_new_role>Listener</dest_new_role>
</transition>

• Notification: When a transition finishes, the
system will notify each party the result and the
current version of the payload. Notifications of
different form might be sent in different
situations, and clients might only accept the
message formatted in a certain way. As a result,
notifications are specified as a set of rule based
actions. A notification rule takes the following
form:

 <notifications>
 <notification>
 <condition>...</condition>
 <prefix>...</prefix>
 <suffix>...</suffix>
 <message>...</message>
 </notification>
 <notification>...<notification>
 ...
 <notifications>

Where condition is a Boolean XPath expression
decides if the notification rule is enabled; Prefix and
Suffix are headers and footers added on the message,
and Message specifies the message body as an XSL
transformation on the data model. The state
transition machine is formally described with role
assignments, assertions, and actions. For simplicity,
only a flat model is described.

Definition 1. State Transition Machine (STM) is
defined by a tuple as follows

Μ = (Σ, Ε, Π, Ρ, Α, Χ, Θδ, q0, qf),

where

A SECURE FRAMEWORK FOR MANAGING TRANSACTIONAL PROPERTIES OF BUSINESS OBJECTS

61

• Σ is a finite set of states.
• Ε is a finite set of symbols called event

alphabet.
• Π is a finite set of symbols called participants.
• Ρ is a finite set of symbols called roles.
• Α = {Α: Π → Ρ} is a set of partial functions

called role assignments. Each a€∈€Α
corresponds to a different assignment of roles to
participants.

• Θ is a finite set of actions.
• Χ is a finite set of Boolean expressions called

the assertions.
• δ: Σ × Ε × Ρ × Χ → (Σ × Α × Θ) is a partial

function called the transition function.
• s0€∈€Σ is the initial state.
• sf€∈€Σ is the final state.

The STM works in the following fashion:

• STM is in a state s (initially, it is in the initial
state s0);

• If an event r is initiated by some participant
with the role r, and if there exists c such that
δ(s,€e,€r,€c)€=€(s1,€a,€q) and c evaluates to
true, then the STM will consume the event and
go into state s1, and participants will be assigned
to roles according to a;

• Otherwise, the STM will stay in the state s0with
the input event and role pair consumed.

The above process is repeated until the STM
enters the final state sf.

4 DATA MODELING

The assumption is that the actual payload
(negotiation details) can be defined using XML
schema and represented as an XML document. For
example, FpML is using to describe the payload in
many financial applications. The data model defines
a consistent view of the negotiation data with control
data and payload data. The control data works with
any types of payload data.

In order to query and modify payload data
efficiently, the mappping of data specified in XML
schema to relational database DDL is introduced.
For simplicity, the data type is modelled in the
following BNF form:
type := SimpleType
 | type, type
 | type*
 | type | type
 | tag[type]
SimpleType := String | Boolean | Numeric

The root element in the form tag[type] is shown
in Figure 3. The restriction to this approach is that
recursive definitions of a complex data type are not

allowed to avoid unbounded depth of nested
elements. The design goal of the mapping approach
is to provide efficient query and update
functionalities through XML, therefore the purpose
is to minimise the number of generated tables and
reduce the possible join operations during a query.
There are some other restrictions on the details-
schema, mainly features that are not supported in the
current version. For example, derived types, attribute
data, imported type or schema etc. The following is
a valid schema.
R := A, B
A := m[C*]
B := h[C | D]
C := e[F]
D := g[F]
F := String

The root element is defined as a[R].
Any type definition can be represented as a finite

tree with SimpleType nodes as the leaves and
complex types as none-leaf nodes. Edges are
annotated with element names if there is one. The
tree can be construct recursively according to a
simple algorithm. The detail is beyond the scope of
this paper. The above example can be transformed
into a tree in the following form:

The tree is transformed into a forest by cutting
all the edges marked “*’’. For each new tree with
node N as the root, a new root element is added and
the edge is annotated with the name constructed by
concatenating all the edge names separated by “_’’
in the root to node N path in the original tree, and an
unique ID is appended at the end to avoid ambiguity.

For each tree, a table is generated in the
relational database. The table name is the
concatenation of the edge name between the root
element and its child node. For each leaf node in the
tree, a column in the table is added. The column
name is also a concatenation of its ancestors as up to
the element that is used in the table name. The
column type is decided by its corresponding simple

Figure 3: Root elememts

ICETE 2005 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

62

data type. In addition, each table has an id column
for correlation purposes.

To provide convenience and efficiency, the XML
schema is extended in several ways. For example, a
table name and column name can be specified
explicitly instead of using the automatically
generated names; An element can be designated as
opaque so that its contents will be saved in a single
text column as an XML string; Indexes can be
defined to speed up the queries.

QueryML is an XML language designed to
perform queries on negotiation data. It is based on
the data model and the mapped payload schema to
allow the user to create powerful queries intuitively.
It can be easily converted into SQL, which can be
run against its internal database.

An objective is to replace QueryML with a
standard querying language such as XQuery. At
present XQuery is not well supported by third party
vendors yet. Current standards such as SQL or
XSLT only meet part of the needs. SQL cannot be
used directly because only XML-schema, but no
database schema, is exposed to external applications;
XSLT is a transformation language and is not
suitable to be used as a general XML query
language. The internal data representation is
relational, therefore the SQL query from the XML
query is easily constructed and efficiently executed.

A QueryML statement is defined on a given data
model. The query will return a data set. Each
element in the data set is of the data type defined in
the data model. RootElementName is the root
element of the data to be queried, and is used as the
root element name of the query result. In simple, the

syntax of QueryML is:
query := <DataSet>
 <RootElementName>
 statement
 </RootElementName>
 </DataSet>
statement := <and>statements</and>
 | <or>statements</or>
 | <minus>statement, statement</minus>
 | atomic
statements := statement+
atomic := <exp>Boolean XPath expression<exp>

An atomic statement denotes a query on the data
set such that elements in the query result satisfies the
XPath expression. The and, or, and minus statement
represents intersection, union, and subtract of
subquery result sets, respectively. The QueryML can
be translated into SQL statement using and, or and
subqueries easily.

In addition, an update datagram is used to
specify the data image before and after the update
operation to do updates on the XML data. Unlike the
query statements which are performed in the
relational database.

5 WEB SERVICE INTERFACE

Interfaces of the framework are accessible through
the SOAP and WSDL based Web Services. For
process logic control, there are two important end
points: Initiate and Transition. A successful Initiate
request will initiate a new process instance and
notify all the participants. A successful transition
request will do a transition on the process instance
and notify each party of the updated state and data.

Figure 4: Performance test result

A SECURE FRAMEWORK FOR MANAGING TRANSACTIONAL PROPERTIES OF BUSINESS OBJECTS

63

In addition, interfaces are provided to do query via
the QueryML and configuration and management.

All communications among the clients are
through the framework. A client send a request to
server, the server validate the request, and perform
database transactions, then notify all related clients
of the result. Each client exposes a call back
interface to the server for notification purpose.

When a transition succeeds, it can optionally
make web service calls according to the model
specification. This can be used to perform arbitrary
tasks, such as sending an email, write a log file, or
invoke another transition.

6 RESULTS AND DISCUSSION

The framework has been used in developing several
mission critical trading products. It has been proved
that the development cycle is reduced about one
third comparing to original approaches. Man power
is also saved by approximately the same amount.
The reason is that the framework is now shared as a
common backend for multiple products and
maintained by a small group. In addition they
produce a contract (the control logic and data model
specification) for the product development team to
follow. Each product development team does not
need to worry about the backend control any more.
They only need to focus on building the client
interfaces. The result is a group of specialists take
control of the business logic specification and
execution at a high level, and another group of
specialists take control of the interface design and
system integration. Both groups have higher
confidence about their work and better productivity
(see Figure 4 for futher details). The framework was
developed on the windows platform with Oracle 8i,
Oracle 9i or SQL Server 2000 as the database server.
The test shows the performance is excellent with a
modest hardware configuration. When using the new
IA64 platform, the performance can be further
improved.

One benefit is that the application logic layers of
several products are running the same framework.
The differerence between the approaches can be
found in the control logic and data model
specification, which are described in several XML
files. A centralised deployment of the server or a set
of servers can handle many different products. Many
different servers and products would have to be
deployed and managed separately otherwise. With
the use of web service, client software can be
deployed easily across organisation boundaries.

7 CONCLUSION AND FUTURE
WORK

The XML-based framework for developing trading
systems was introduced. The prospects of the
framework are as follows: an XML based
negotiation modelling language to specify a trading
process declaratively; a way to integrate data with
the control logic at a high level, a mechanism to map
XML-Schema data model into relational database
and an XML based query language based on it; a
high performance execution engine to manage and
coordinate the business process; A set of predefined
web service interfaces to smooth-line the integration
of different clients and legacy systems and to
simplify installation and deployment. The result of
the research shows that the development time and
cost is greatly reduced. In addition, through constant
maintenance the system will be secure, but no
mechanism is 100 per cent failsafe and the cost of
security provision has to be weighed up against the
risk for and consequence of any loss, together with
the additional consideration of enabling
straightforward access (Shoniregun et al, 2004).

REFERENCES

Booch, G., Rumbaugh, J. and Jacobson, I., 1999. The
Unified Modeling Language User Guide. Addison-
Wesley.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.
and Stal, M., 1996. Pattern-Oriented Software
Architecture: A System of Patterns. John Wiley &
Sons.

Coad, P. and Nicola, J., 1993. Object-Oriented
Programming. Yourdon.

Fernandez, M., Simeon, J. and Wadler, P., 2005. An
Algebra for XML Query. Online at:
http://www.cs.bell-labs.com/ wadler/topics/xml.html
(Access date: January 2005).

FpML.org., 2001. Financial products Markup
Language(FpML) 1.0. FpML.org, May. Online at:
http://www.fpml.org/spec/2001/rec-fpml-1-0-2001-05-
14/index.html (Access date: January 2005).

Hollingsworth, D, 1995. The workflow reference model.
Workflow Management Coalition TC00-1003, January.
Online at:
http://www.wfmc.org/standards/docs/tc003v11.pdf
(Access date: January 2005).

ICETE 2005 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

64

Hosoya, H. and Pierce, B., 2000. Xduce: a typed xml
processing language. In Proceedings of Third
International Workshop on the Web and Databases
(WebDB2000).

IBM, 2002. BEA Systems, and Microsoft. Business
Process Execution Language for Web Services,
Version 1.0. Online at: http://www-
106.ibm.com/developerworks/library/ws-bpel/ (Access
date: January 2005).

Milo, T., Suciu, D., and Vianu, V., 2000. Typechecking
for XMLtransformers. In Proceedings of the ACM
Symposium on Principles of Database Systems.

Mohan, C., Alonso, G., Gunthor, R., Kamath, M., and
Reinwald, B., 1995. An overview of the exotica
research project on workflow management systems.
Proc. 6th Int’l Workshop on High Performance
Transaction Systems, Asilomar, September.

Mohan, C., 1997. Recent trends in workflow management
products, standards and research. In Proc. NATO
Advanced Study Institute (ASI) on Workflow
Management Systems and Interoperability, Istanbul,
August.

Reuter, A. and Schwenkreis, F., 1995. Contracts - a low-
level mechanism for building general purpose
workflow mangement systems. Bulletin of the
Technical Committee on Data Engineering, 18(1):4,
March.

Schael, T., 1998. Workflow management systems for
process organisations. Lecture Notes in Computer
Science, 1096.

Shoniregun, C., Logvynovskiy, O., Duan, Z., Bose, S.,
2004. ‘Streaming and Security of Art Works on the
Web’. In the Proceedings of the IEEE Sixth
International Symposium on Multimedia Software
Engineering (IEEE-MSE2004), Miami, Florida, USA.

Wodtke, D., Weissenfels, J., Weikum, G., and Kotz
Dittrich, A., 1996. The mentor project: Steps towards
enterprise-wide workflow management. Proc. 12th Int.
Conf. on Data Engineering, New Orleans, Louisiana.

A SECURE FRAMEWORK FOR MANAGING TRANSACTIONAL PROPERTIES OF BUSINESS OBJECTS

65

