
ON-THE FLY ANNOTATION OF DYNAMIC WEB PAGES

Mamdouh Farouk
Department of Computer Science,Faculty of Computers and Information, Assiut University, Assiut, Egypt

Samhaa R. El-Beltagy
Department of Computer Science,Faculty of Computers and Information, Cairo University, 5 Tharwat Street, Giza, Egypt

Mahmoud Rafea
Central Lab for Agricultural Expert Systems, Agricultural Research Center, Ministry of Agriculture and Land Reclamation,

El-Nour St., Dokki, Giza, Egypt

Keywords: Semantic web, Annotation, DB annotation, XML

Abstract: The annotation of web pages is a critical task for the success of the semantic web. While many tools exist to
facilitate the annotation of static web pages, annotation of dynamically generated ones has not been
sufficiently addressed. This paper addresses the task of annotating web pages whose dynamic content is
derived from a database. The approach adopted is based on annotating a database schema based on public
ontologies and using this database annotation to generate a dynamic web page’s content annotation on the
fly. This paper both presents details about the adopted approach as well as a tool that supports this approach.

1 INTRODUCTION

The semantic web presents a vision in which
software agents will be able to understand and use
web content to perform tasks that aid Internet users.
This will enable web pages as well as databases and
other web resources to be ‘machine-available’
(James, 2002). In order to realize this vision of the
semantic web, web resources have to be
semantically annotated in a format that enables web
agents to understand web contents where semantic
annotation refers to the process of providing
additional information (metadata) to existing data so
as to describe their content and context. As a result,
metadata that describe web resources have been
identified as key to creating the Semantic Web
(Handschuh, 2001). After obtaining metadata, it
should represented in a format which facilitates
reasoning services from operation over the metadata,
thus enhancing their processing power (Kopena,
2003). Using ontologies in the annotation process
makes the final annotation more usable.

Annotating web resources is no trivial task due to
the current size of these resources. Supporting this
task through the development of tools that can

facilitate it is imperative for its success. As a result
much work has been carried out to make this process
an easier one. The aim of this work is to address this
issue in relation to pages whose content is
dynamically derived from databases.

2 BACKGROUND

During the last few years, many tools [manual and
semi-automatic] were developed to facilitate the
semantic annotation process. Manual or semi-
automatic tools try to extract the ‘meaning’ of a web
page and represent this meaning (metadata) in a
format, which can enable search agents to perform
reasoning on it. An example of such tools is the
MnM tool, which provides both automated and
semi-automated support for annotating web pages
with semantic contents (Vargas, 2002). However,
most of the developed semantic annotation tools are
devoted to the task of annotating static web pages
(HTML pages) even though a large majority of
current web sites are made up of largely dynamic
web pages that are generated based on scripts that

327
Farouk M., R. El-Beltagy S. and Rafea M. (2005).
ON-THE FLY ANNOTATION OF DYNAMIC WEB PAGES.
In Proceedings of the First International Conference on Web Information Systems and Technologies, pages 327-332
DOI: 10.5220/0001234703270332
Copyright c© SciTePress

access databases and/or respond to specific user
variables (Siegfried, 2003). Contents of such pages
change according to its user. Failing to annotate
these web pages, results in a failure to integrate them
as part the semantic web vision. In the following
sections, we describe a system/tool that was
developed specifically to address this issue and that
is capable of supporting the task of creating
annotations for web pages, which derive their
content from a database.

3 SYSTEM OVERVIEW

In this work, we propose an approach to annotate
dynamic web pages that are generated based on data
retrieved from a database. Our approach is designed
and implemented for Active Server Pages (ASP), but
can generalize to any dynamically generated web
pages that access a database. The generated
annotations are represented in DAML. The
technique proposed to annotate dynamic websites
depends on dynamic generation of annotations
according to SQL queries contained in pages within
such sites. . Figure 1 shows the general architecture
of our proposed dynamic web page annotation tool.

As shown in figure 1, two phases are proposed
for the annotation process. The first phase involves
annotating the database schema of the DB used by
some given application. In this phase, a user
manually maps database objects to some predefined
ontology classes. This task is facilitated by the
developed tool. The output of this phase is an XML
document that describes the DB schema. In the
second phase, on the fly automatic annotations are

generated and augmented to a query’s result. The
input to this process is the SQL query contained in a
web page as well the XML file generated in the first
phase and the output is the generated annotation. In
the next few subsections more details are provided
for each of these phases.

3.1 Annotating the database schema

In our work, automating data annotation relies
largely on successfully annotating the schema of the
database from which data is to be retrieved. In this
process, a user describes various DB objects and
relations that exist between these objects based on a
predefined ontology. This description is represented
in a generic formal structure, (we’ve chosen XML)
so as to be easy to use.

Figure 1 shows the model for database schema
annotation process. A database annotator tool (DBA)
was implemented to facilitate this process. The DBA
accesses the database and loads its schema in a
graphical user interface. The DBA also allows a user
to select ontology, loads the ontology and displays
its structure. Through the graphical user interface,
the user can annotate the DB schema using the
ontology classes.

The DB schema annotation process is divided
into the following steps:
- Annotation of database tables: in this step, a user

describes database tables by mapping them to
ontology classes and mapping the table’s fields to
the class’ properties.

- Annotation of relations between tables: in this
step, a user describes the type of relationship that
exists between the database tables.

Figure 1: General architecture

WEBIST 2005 - WEB INTERFACES AND APPLICATIONS

328

3.1.1 Annotation of database tables

To map a DB table to an ontology class, the DBA
tool creates a table element and maps fields in this
table to properties of a class selected from the used
ontology. The mapping is represented using another
nested element called field. This is done for each
field in the database table. Sometimes fields in the
DB table need not be assigned to any property in the
ontology, e.g., a record’s auto-increment field.

To further illustrate and clarify this process,
assume that we have a “dept” table in our database
as defined in figure 2 (a). Also, assume that the
selected ontology has a “Department” class defined
as in Figure 2 (b). Mapping between the table and
the ontology will result in the annotation of the
“dept” as shown by the XML representation
provided in Figure 2 (c). In this figure, the “dept”
table is represented with the table element. The
attribute “name” provides the name of the table in
the original database, while the attribute “RTClass”
provides the name of the ontology class to which
this table can be mapped (in this case: Department).
In a similar manner, the table’s field “location” is
mapped to the class property “address” and the
table’s field “name” is mapped to the class property
“name”. Finally, a primarykey element defines the
primary key field(s) of a DB table, which is used in
the query result annotation process (explained later)
to distinguish between different DAML created
instances.

3.1.2 Annotation of relations between tables

Annotating the relationships that exist between DB
objects is critical to making rich annotations to data
that will be retrieved from the database. Of

particular interest, is the annotation of one-to-many
and many-to-many types of relationships.
Annotating one-to-many relationships: When two
tables are related together through a one-to-many
type of relationship, one of these tables will contain
the primary key of the other table as a foreign key.
To annotate this relationship, the tool creates a
foreignkey element to represent the relationship
between these tables. Within the foreignkey
element, the name attribute is used to represent the
foreign key field within the table element
representing the table which contains the foreign key
field. The XML representation of the foreign key
takes the following structure:
<foreignkey name=”ForeignKey” RTProperty=”
OntologyClassProperty”
RTTable=”ReferenceTable”/>

To illustrate further, figure 2 (a) shows a one-to-
many relationship between the researcher table and
the department table (each researcher can work in
only one department and a department will typically
have many researchers working within it). A
researcher is affiliated to a dept, so within our
selected ontology this relationship is called
“has_affiliation”. To annotate the relationship
between these two tables (researcher and dept), a
<foreignkey> tag is added under the <table> tag of
the researcher table. Within this tag, the primary key
of the department in which the researcher works is
represented by the name attribute, the name of the
relationship is represented by the RTProperty (Refer
to Property) attribute (which is a property previously
defined in the used ontology) and finally the name of
the table to which the researcher is related is
represented using the RTTable (Refer To Table)
attribute. Figure 3 (b) shows this annotation.

<daml:Class rdf:ID="Department">
 <rdfs:label>Department</rdfs:label>
</daml:Class>
<daml:Property rdf:ID="Name">
 <rdfs:domain rdf:resource="#Department" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/xmlschema-2/#string" />
</daml:Property>
<daml:Property rdf:ID="address">
 <rdfs:domain rdf:resource="#Department" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/xmlschema-2/#string" />
</daml:Property>
<daml:Property rdf:ID="Phone">
 <rdfs:domain rdf:resource="#Department" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/xmlschema-2/#string" />
</daml:Property>

<table name="dept" RTClass="Department">
 <field name="location" RTProperty="address" />
 <field name="name" RTProperty="Name" />
 <primarykey>
 <field name="id" />
 </primarykey>
</table>

(c) (b)

(a)

Figure 2: table annotation example

ON-THE FLY ANNOTATION OF DYNAMIC WEB PAGES

329

Annotating many-to-many relationships: When
two tables are related together by a many-to-many
type of relationship, a bridge table is created to link
the two tables. Within the bridge table, the
relationship is further broken into two relations each
of which is a one-to-many relation. So, to annotate a
many-to-many relationship, the following steps are
carried out:
1- Create a <bridgetable> tag to relate the two

tables. Relating between the two tables is done
through embedding two foreignkey elements in
the bridge table. One of these is used to describe
the relationship between the first table to the
second, while the second is used to describe the
relationship between the second to first.

An example of a many-to-many relationship is
that which exists between researchers and
publications. A researcher can have many
publications, and a publication can be authored
by multiple researchers. So, the bridge table
created to represent this relationship will have
two foreignkey elements, one that states that a
publication has an author which is a researcher,
and another that states that a researcher has
publications. This can be represented as
follows:

2- For each table involved in a many-to-many
relation (researcher and publications in the given

example): add a <has_relation> tag and set the
“with” attribute value to the name of the bridge
table as follows:
<has_relation with="researcher_publ"/>
A tool has been created to facilitate this

annotation process is illustrated in figure 4.

3.2 On the fly automatic annotation
of a query’s result

When a request for a dynamic web page is received
on the server, the server executes the requested
page’s script and returns the HTML result to the
client. Our goal is to annotate the result so as to
enable semantic manipulation of the page by sending
back the annotation embedded in the HTML result.
To achieve this goal, when the server executes the
requested page, the annotator generates an
annotation for the result simultaneously according to
the new page’s contents which are determined by the
SQL query(s) executed in that page. This process
employs the generated DB schema annotation
described in section 3.1. The second phase, shown in
figure 1, illustrates the process model of “on the fly
annotation”. The execution of a web page results in
a call to a function that takes the SQL query as input
and returns the annotation of the query result as
output. The process of annotation generation occurs
on the fly as part of the dynamic page’s execution.
The following three steps are applied to generate the
annotation for a result of an SQL query encountered
within a dynamic web page:
- Step 1: Primary keys values of all records
contained in the result are fetched

Figure 3: one-to-many relation annotation

<bridge_table name="researcher_pub">
 <foreignkey name="researcher_id"
RTProperty="has_author"
RTTable="researcher" />
 <foreignkey name="publication_id"
RTProperty="has_publication"
RTTable="publications" />
</bridge_table>

WEBIST 2005 - WEB INTERFACES AND APPLICATIONS

330

Figure 4: Database annotation tool

- Step 2: An ontology instance for each retrieved
record is created

- Step 3: Relationships between the created instances
are identified.

Each of the above steps is detailed in the following
subsections

3.2.1 Step 1: Fetching primary key values of
all records contained in a query result

The first step to annotate the result of an SQL query
is to obtain the primary key values for all records,
returned in the query’s result. This can be done
easily by generating an SQL query from the original
incoming query to retrieve the desired primary key
values. The generation of this new query depends on
the annotation of the DB schema, which is queried
to get the primary key fields for each table. So, to
generate this query we do the following:
(1) Get the names of the queried tables from the

original query (this can be obtained from the
from clause).

(2) For each table get the primary key field(s) from
the XML DB schema annotation.

(3) Construct a select query to retrieve primary key
values using the primary key field values
obtained from the previous step and with the
“from” and “where” clauses corresponding to
their counterparts in the original query. The
resulting query is in the following form :
Select (tableName.PK_Field)+ (From
clause) (Where Clause);
The (tableName.PK_Field) is constructed using
steps 1 and 2, and the (From clause) and (Where
Clause) are obtained from the original query.

For example, given the following original query:
select * from dept where name=’CS’;
After applying the above steps, the generated query
will be:
select dept.id from dept where name=’CS’;

The result of executing the generated query will
be a list of primary key values, which are used in the
next step.

3.2.2 Step 2: Creating an ontology instance
for each of the retrieved records

In this step, an ontology instance is created for each
record retrieved as part of the query result. To create
an ontology instance for a specific record, the
ontology class corresponding to the table from
which the record is retrieved, is obtained from the
XML DB schema file. Then, an empty instance of
that class is created and its property values
instantiated with values from the retrieved record
fields according to the mapping between fields and
properties in the DB schema annotation. For
example, if the retrieved records were obtained from
the “researcher” table and have primary keys 3 and
7, in this step, two instances from the ontology class
corresponding to the researcher table (“Researcher”
class), are created for each record. To do this, a new
query is constructed to retrieve all fields' values in
these two records from the “researcher” table. The
properties' values of the created instances are filled
with these retrieved field’s values according to the
mapping between fields and properties in the DB
schema annotation.

ON-THE FLY ANNOTATION OF DYNAMIC WEB PAGES

331

3.2.3 Representing relationships between the
created ontology instances

In this step we relate the instances created in the
previous step based on the relationship that exists
between these instances and other objects in the
database. In the example given, assuming a
relationship exists between researchers and projects
where a research can work on multiple projects, we
need to represent a relationship between the
retrieved researchers and the specific projects they
are working on. To do so, the tool performs a search
for all relations that can exist between a researcher
and other database objects by checking relations that
exist between the researcher table and other DB
tables in the XML DB annotated schema. For the
researcher table in the XML file (represented by a
table element), the tool will find that a tag
<has_relation_with="research_project"/> exists; this
means that there exists a many-to-many relationship
between the researcher table described in the
“research_project” bridge table. So, if in the
previous step, an instance was created for a
researcher whose record has a primary key called id
with the value of 7, in this step, the tool will create
a query on the bridge table to get all projects, that
have a researcher with id= 7 (this represents projects
in which this researcher is involved in). The tool
then creates instances for each project record
retrieved from the query. The tool also refines the
attributes in each instance. The “persons_involved”
attribute in the project instances are set to the URI of
the instance of the researcher with id = 7 and the
“involved_in_project” attribute in the researcher
instance, is set to the created instances.

The final result of the annotation process is the
set of related instances generated from the above
steps. These instances that contain semantic
information about the page content will be added to
header of the HTML that is sent to the client.

4 CONCLUSION

The success of the semantic web depends on the
easy creation of ontology-based metadata through
the use of semantic annotation tools. This work
presented an approach whereby annotation of
dynamic pages, which derive their content from
databases, can occur on the fly. The proposed
technique generates annotations according to the
retrieved data by annotating a database schema,
creating a direct link between the structure of the
database (tables and fields of a relational database)
and concepts/properties in ontology, and finally
using this in the annotation process. The proposed

technique is powerful, simple, and easy to
implement. Implementing this approach enables
semantic manipulation of such web pages thus
contributing to the establishment of the semantic
web vision.

ACKNOWLEDGMENTS

This work was sponsored by the European
Community’s FP6 Information Society
Technologies programme under contract IST-
001935, EVERGROW (www.evergrow.org).

REFERENCES

James, H., Berners-Lee, T., Eric, M., 2002. Integrating
Applications on the Semantic Web. In Journal of the
Institute of Electrical Engineers of Japan, Vol 122(10),
October, 2002, p. 676-680.

Handschuh, S., Staab, S., 2002, Authoring and annotation
of Web pages in CREAM, in: Proceedings of the 11th
International World Wide Web Conference (WWW),
Honolulu, Hawaii, ACM Press, 7–11 May 2002, pp.
462–473.

Vargas-Vera, M., et al., 2002, MnM: Ontology Driven
Semiautomatic and Automatic Support for Semantic
Markup, In European Knowledge Acquisition
Workshop 2002, Springer-Verlag, 2002, pp. 379–391.

Kopena, H., and Willim, C. R., 2003, “DAMLHiessKB: A
Tool for Reasoning with the Semantic Web”, IEEE
Intelligent Systems, MAY/JUNE 2003, pp. 74-77.

Siegfried, H., Raphael, V., Staab, S., 2003, Annotation for
the Deep Web, IEEE Intelligent Systems,
SEPTEMBER/OCTOBER 2003, pp. 42-48.

WEBIST 2005 - WEB INTERFACES AND APPLICATIONS

332

