
A FRAMEWORK FOR IDENTIFYING ARCHITECTURAL
PATTERNS FOR E-BUSINESS APPLICATIONS

Feras T. Dabous1, Fethi A. Rabhi1 and Tariq Al-Naeem2
1School of Information Systems, Technology and Management

2School of Computer Science and Engineering
The University of New South Wales, 2052 Sydney NSW, Australia

Keywords: Patterns, e-Business Applications, Architectural Design, Legacy Systems, e-Finance.

Abstract: The success of today’s enterprises is critically dependant on their ability to automate the way they conduct
business with customers and other enterprises by means of e-business applications. Legacy systems are valu-
able assets that must play an important role in this process. Selecting the most appropriate architectural design
for an e-business application would have critical impact on participating enterprises. This paper discusses
an initiative towards a systematic framework that would assist in identifying a range of possible alternative
architectural designs for such applications and how some of these alternatives can evolve into formal archi-
tectural patterns or anti-patterns. This paper focuses on e-business applications with some requirements and
assumptions that are often presented in a few specific domains such as e-finance. The concepts presented in
this paper are demonstrated using a real life case study in the domain of e-finance and in particular capital
markets trading.

1 INTRODUCTION

The concept of e-business applications has been used
extensively in the literature to refer to a range of ap-
plications. This range encompasses B2C interactions
(e.g. simple Web-based client/server applications)
and B2B interactions either as a workflow by means
of workflow technology or as a distributed application
by means of middleware technologies. In this paper,
we consider an e-business application domain that can
be improved by developing or utilising corresponding
business logic and functionality that can span differ-
ent organisational legacy systems.

In previous work, we identified and formalised a
number of architectural patterns based on practical
experience in the domain of e-finance. These patterns
address a similar problem context and therefore con-
stitute alternative architectures where the selection of
the most appropriate pattern is based on the prob-
lem context specification. In (Dabous et al., 2005),
we presented models for patterns qualities estimations
that can be used in the selection process for a given
problem context, whereas in (Al-Naeem et al., 2005b)
we utilised AHP (Anderson et al., 2002) method for
this selection process that is extended in (Dabous,
2005) to encompass estimations provided by the qual-

ity models.

This paper extends upon the previous work by
proposing a framework for identifying patterns that
can be used in the architectural design of e-business
applications. We consider e-business domains that
have special requirements and assumptions mainly re-
lated to the existence of legacy functionality. These
domains, such as e-finance, consist of applications
that are business process intensive and therefore we
alternatively use the term Business Process (BP) to
refer to an e-business application.

This paper is organised as follows. Section 2
presents the basic assumptions made in this research
and formalises the concepts used. It also presents e-
finance particularly capital markets as a real-life ap-
plication domain. Section 3 discusses a common ar-
chitectural description that forms the basis of the pat-
terns identification framework. Section 4 discusses
the two major phases in the proposed patterns identi-
fication framework. Section 5 presents and discusses
five design strategies that ingrain the basic input for
the framework. Section 6 presents five candidate pat-
terns that are the outcome of the first phase in the
proposed framework together with the instantiation of
each pattern on the selected application domain. Fi-
nally, section 7 concludes this paper.

88
T. Dabous F., A. Rabhi F. and Al-Naeem T. (2005).
A FRAMEWORK FOR IDENTIFYING ARCHITECTURAL PATTERNS FOR E-BUSINESS APPLICATIONS.
In Proceedings of the First International Conference on Web Information Systems and Technologies, pages 88-95
DOI: 10.5220/0001234000880095
Copyright c© SciTePress

2 BASIC ASSUMPTIONS AND
CONCEPTS

This section presents the basic assumptions made in
this paper and introduces the different concepts used
such as functionality, legacy systems and BPs to-
gether with a selected application domain. The as-
sumptions and concepts discussed are based on sev-
eral architectural analysis, benchmarking studies, and
e-business applications development such as (Rabhi
et al., 2003) that have been conducted on a number of
legacy systems.

2.1 Review of notation

A functionality in the context of this research refers to
an identified autonomous task that resides within an
“encapsulating entity”. A functionality corresponds
to an activity within a BP which performs a specific
job (i.e. in part of the business logic). A functionality
can be either automated or new (i.e. non-automated).
If it is automated then the encapsulating entity can
be a legacy system. On the other hand, if it is new
functionality then the encapsulating entity can be a
human process. We use the notionF all = {fi : 1 ≤
i ≤ |F all|} to represent the set of all functionalities
(automated and not automated) that belong to a par-
ticular domain. The definition of the setF all does not
tell anything about the automation of any function-
ality. We also use the concept of “equivalent func-
tionalities” to refer to a group of functionalities that
have similar business logic each of which resides in
a different encapsulating entity. We use the notion
Q = {qi : 1 ≤ i ≤ |Q|} to represent the set of all
groups of equivalent functionalities. Eachqi ⊆ F all

is the ıth set of a number of equivalent functionali-
ties such that|qi| ≥ 1 andqa ∩ qb = φ : a 6= b andSq

i=1
qi = F all

Two assumptions related to the legacy systems are
made. The first one is that each legacy system is
owned by one company within the domain of study
and their development teams are not related to the
BPs development team. The second one is that the
development team for the BPs can only interact with
these legacy systems through their defined interfaces
(e.g. in the form of APIs) and has no access permis-
sion to the corresponding source code. Therefore, we
assume that different functionalities within the same
legacy system have similar interfacing mechanism.

We use the notationF au ⊆ F all to represent the
set of all automated functionalities contained in the
legacy systems of a particular domain. LetLG = {li :
1 ≤ i ≤ |LG|} be the set of key legacy systems iden-
tified in that particular domain. Everyli ⊆ F au and
la ∩ lb = φ whena 6= b . It is also important to note
that in practice there is no instance of two equivalent

functionalities within the same legacy system mean-
ing that if fx ∈ liand, fy ∈ li then{fx, fy} * q∀q ∈ Q.

We also consider a fixed number of BPs in a par-
ticular domain referred to by the setBP = {bpi : 1 ≤
i ≤ |BP |}. We assume that these BPs may have ac-
tivities that correspond to existing functionalities in
the legacy systems. The business logic of eachbpi

is expressed in terms of an activity diagram whose
nodes are the activities (i.e. functionalities) and the
arcs determines the execution flow between the func-
tionalities. We use the functionactivities(bp) ⊆ F all

to identify the set of functionalities that are required
by the BPbp (i.e. it returns the set of all nodes in a
bp’s activity diagram).

In the context of this research we assume that
everyf ∈ F all has at least one correspondingbp ∈
BP such thatf ∈ activities(bp). In other words,Sb

i=1
activities(bpi) = F all.

2.2 Selected application domain

Within the e-finance domain, we focus on capital
markets which are places where financial instruments
such as equities, options and futures are traded (Har-
ris, 2003). The trading cycle in capital markets com-
prises a a number of phases which are: pre- trade an-
alytics, trading, post-trade analytics, settlement and
registry. At each phase of this cycle, one or more
legacy systems may be involved. Therefore, a vast
number of BPs exist within this domain involving a
number of activities that span through different stages
of the trading cycle. Many of these activities can
be automated by utilising functionalities of existing
legacy systems. The automation of these BPs is chal-
lenging for two reasons. The first one is that it may
involve a number of legacy systems that are owned by
different companies. The latter one is that these BPs
are normally used by business users who are not tied
to any of these companies (e.g. finance researchers).

The application domain presented in this paper cor-
responds to one problem context that comprises four
legacy systems encapsulating 12 automated function-
alities, five non-automated functionalities and five
BPs that leverages the 17 functionalities in conduct-
ing the business logic. We focus on four legacy sys-
tems that have been customised around Australian
Stock Exchange (ASX) practices. Theses systems are
FATE, SMARTS, XSTREAM, and AUDIT Explorer.
Each of these systems supports a number of func-
tionalities accessible through APIs. In this paper, we
consider a few functionalities in each system that are
shown in figure 1. These functionalities have been re-
ported in (Yu et al., 2004; Dabous et al., 2003). We
also consider five BPs in this paper which are: ASX
trading data processing, visualisation of ASX trad-
ing data, reporting surveillance alerts, trading strategy
formalisation, and trading strategy execution. Figure

A FRAMEWORK FOR IDENTIFYING ARCHITECTURAL PATTERNS FOR E-BUSINESS APPLICATIONS

89

LGFall
Fau

Q2

RealTimeSim1

RealTime3

BAnalytic

Analytic2
Q4

TeSim1

TE3

Q3

TeSim1

F
A

T
E

RealTimeSim1

CurrDaySim1

X
S

T
R

E
A

M

Realtime3

TE3

CurrDay3

A
U

D
IT

VisualModel4

Q1

IntraDay2

CurrDay3

CurrDaySim1

S
M

A
R

T
S

CalibRun2

RealTimeAlerts2

IntraDay2

InterDay2

Analytic2

Q5

Q8

Q7

Q6
CalibRun2

RealTimeAlerts2

VisualModel4

InterDay2

Q12

RegulatorQ11
StrategyCnrl

Q10
OrderExeMgt

Q9
MktEventDetect

Figure 1: Selected application domain

IntraDay2 CurrDay3

Analytics2

VisualModel

BP2: Visualization

Today in Days
Mkt=asxMkt=asx

Old in Days

B
P

5
:

T
ra

d
e

 S
tr

at
e

g
y

 e
x

ec
ti

o
n

MktEventDetect

Event detected

StrategyCtrl

Ctrl msg

OrderExcMgt

RealTimeSim1 RealTime3

Subscriber event
triggered

Subscriber event
triggered

TE3

Order
palcement

Event=trade

else

Mkt= ASX-sim Mkt= ASX

Mkt= ASX-sim Mkt= ASX

TeSim1

CurrDay3
InterDay2 IntraDay2

M
kt

 =
si

m
-A

S
X

Analytics2BAnalytics

M
et

ri
cs

=
sm

ar
ts

M
e

tr
ic

s=
B

e
ta

BP1: ASX Trading Data Processing

M
kt

 =
rA

S
X

Old in Days

Note: BP1 forms a sub-BP of BP2

CurrDaySim1

Today in Days

BP3: Surveillance

CalibRun2

RealTimeAlerts2

Regulator

Alert raised

B
P

4
:

T
ra

d
e

 S
tr

a
te

g
y

fo

rm
a

li
s

at
io

n

MktEventDetect

Event detected

StrategyCtrl

Ctrl msg

OrderExcMgt

Event=trade

else

Figure 2: Activity diagrams of the BPs

2 illustrates the workflow for each of these BPs as ac-
tivity diagrams. More details about the functionali-
ties, legacy systems, and the BPs that are used in this
application domain are discussed in (Dabous, 2005).

3 COMMON ARCHITECTURAL
DESCRIPTION

We propose a common architectural description with
the main motivation of facilitating a unified system-
atic architectural presentation. It describes each iden-
tified pattern in terms of a set of architectural compo-
nentsComp = {Xi : 1 ≤ i ≤ |Comp|} which commu-
nicate with each other according to the BP descrip-
tion. A componentXi ∈ Comp is described accord-
ing to four essential features: denoted by the tuple
< tasks(Xi), conTo(Xi), invBy(Xi), access(Xi) >

where:
1. tasks(Xi): is a function that identifies the set of

tasks that are encapsulated in the componentXi.
These tasks can be one of three types. The first one
isthe implementation of a functionalityf ∈ F all

that is denoted byC(f) and is used in three differ-
ent cases. The first is whenf ∈ F au refers to an
existing legacy functionality within a legacy sys-
tem. The second is whenf ∈ F au refers to rede-
veloping (i.e. reengineering) an existing function-
ality. The third is whenf ∈ (F all − F au) which
is not implemented in any of the legacy systems.
The second one is he implementation of a wrapper
for a functionalityf that is denoted byCW (f). It
is used whenXi makes it possible to invoke the
functionality f from other components. The third
one is the implementing of the business logic of a
business processbp denoted byCBL(bp). We will

use the term ‘business process enactment’ to refer
to the implementation code of the business logic.
Note that these three tasks functions return the im-
plementation code resulted from applying the re-
spective task on its parameters. For exampleC(f)
returns the implementation code when applying the
‘create’ task onf (i.e. the code that implementsf).

2. conTo(Xi) ⊂ Comp: is a function that returns the
set of components thatXi invokes while executing
its business logic.

3. invBy(Xi) ⊂ Comp: is a function that returns the
set of components that invokeXi.

4. access(Xi): a function that returns the access
method that is used by allXj ∈ invBy(Xi) to in-
vokeXi. There are three main categories of access
methods that we consider. The first one is service-
oriented (SO) that presumes the existence of acces-
sible interfaces by means of a remote invocation us-
ing XML based protocols such as SOAP. The sec-
ond one is legacy-oriented that presumes the exis-
tence of APIs for local invocations whereas extra
code is required to make these APIs available for
remote invocations by means of binary protocols
that ranges from TCP/IP to RPC based protocols.
For this access method we used a function denoted
by api(l) : l ∈ LG that returns the API name of
the legacy systeml that we also use as the access
method for the same legacy system. The third one
is ‘nil’ that is used whenXi is not required for in-
vocation by any otherXj ∈ Comp. We denote the
set of all available access methods by the setAC
and thereforeaccess(Xi) ∈ AC ∀Xi ∈ Comp.

WEBIST 2005 - INTERNET COMPUTING

90

r1
r2
r3

d1

d4d3

d2

DS

For every c in P(DS)
Rules

Step 2:generate architectural
construction algorithm by

combining all ds in c

validate

dispose

Step 4:apply
pattern ranking/

selection method

Estimations

Ranked patterns

Preferences

P
h

a
se

 #
1

P
h

a
s

e
#2

Successful

stories

Unsuccessfulstories
Ptanti

Ptcndt

Valid match

Not a valid match

Step 1: instantiated
architectures for all

candidate patterns in Pt cndt

Problem context
specification

Ptfrml

d1 d2 d3 d4

d4

d3

d4

d2

d3

d2d1

d4

d1

d3

d1

d2

d1

d3

d2 d1

d4

d2 d1

d4

d3

d4

d3d2

d1

d4d3

d2
Step 1:generate P(DS)

Step 2: apply
conseq. models

Step 3: consult
stakeholders

Step 5:Long-
term evolution

Figure 3: Framework for the patterns identification

4 PATTERNS IDENTIFICATION
FRAMEWORK

This section presents an extensible systematic frame-
work for identifying domain-specific architectural
patterns for e-business applications. As illustrated in
figure 3,this framework comprises two phases: candi-
date patterns identification phase followed by the evo-
lution phase into formal patterns.

Phase #1: candidate patterns identification

This stage considers the identification of architec-
tural descriptions that correspond to candidate pat-
terns. This phase consists of two main steps:

1. Given a set ofdesign strategies denoted by theDS
(see section 5) such that each strategy is formalised
using the common architectural description that is
discussed in section 3, generate the power set of all
subsets denoted byP(DS) that contains2|DS| el-
ements. Eachc ∈ P(DS) corresponds to a unique
possible combination of design strategies.

2. For eachc ∈ P(DS) do the following: Firstly, let
archc be the combined architectural construction
algorithms∀d ∈ c. Secondly, having a set of com-
bining rules denoted byRules (see section 5.2),
checkarchc against all combining rules. Ifarchc

is validated∀r ∈ Rules, thenarchc is added to

the set of candidate patterns denoted byPtcndt (i.e.
Ptcndt = Ptcndt ∪ {archc}), otherwise discard
archc.

Phase #2: evolution into formal patterns

This stage considers the evolution opportunities for
the candidate patterns inPtcndt into either formal pat-
terns denoted by the setPtfrml or anti-patterns de-
noted by the setPtanti. Theoretically, this evolution
process would result inPtcndt = Ptfrml ∪ Ptanti.
However, in reality, the evolutionary process for any
candidate pattern may take several years and depends
mostly on frequent use for that candidate pattern in
practice with different problems to generate either
successful solutions that push forward into formal
pattern or unsuccessful solutions that push forward
into anti-pattern. This phase consists of the five main
steps:

1. Instantiate the architectural description for each
identified candidate pattern inPtcndt on a given
application domain problem that is formalised with
accordance to the notations in section 2.1. Section
6 discusses the candidate patterns instantiations on
the application domain that is illustrated in section
2.2.

2. Apply the consequences estimation models, which
are discussed in (Dabous et al., 2005; Dabous,
2005), on the given application domain specifica-
tions so that estimation per model for each pattern
architecture is generated.

3. Investigate the stakeholders’ preferences on the re-
quired quality attributes that correspond to the pat-
terns’ consequences.

4. Apply a pattern selection algorithm based on steps
1, 2, and 3 using common MADM methods such
AHP which is discussed in (Al-Naeem et al.,
2005b). The outcome of such a selection method
is a rank for each pattern architecture inPtcndt.

5. The last step is to investigate possibilities of the
evolution of each candidate pattern. A candidate
pattern would gradually evolve into a formal pat-
tern in Ptfrml if it has been occupying one of
the higher ranks and successful stories have been
reported about its usage in practice. Otherwise,
such candidate pattern would gradually evolve into
an anti-pattern inPtanti if it has been occupy-
ing lower ranks and/or unsuccessful stories have
been reported about its usage in practice. While
evolving, each candidate pattern documentation in
Ptcndt would also be enriched with all experiences
with different problems context together with the
ranks, successful and unsuccessful stories.

Therefore, this framework is extensible because the
incorporation of one extra design strategy generates

A FRAMEWORK FOR IDENTIFYING ARCHITECTURAL PATTERNS FOR E-BUSINESS APPLICATIONS

91

extra|DS| combinations, and therefore possibly mo-
tivates extra candidate patterns wherever a valid com-
bination is generated. The framework is also system-
atic since all design strategies, candidate patterns, and
consequences models are defined around one com-
mon architectural description (the section 5), and
therefore a tool can be developed in order to navigate
through the steps of this framework. Due to space
limitations, this paper extends only to the first phase
of demonstrating the identification of a few candidate
patterns and step 1 in the second phase by applying
a realistic application from the domain of e-finance.
Indeed, related work to step 2 is reported in (Dabous
et al., 2005) and related work to steps 3 and 4 is re-
ported in (Al-Naeem et al., 2005b; Al-Naeem et al.,
2005a). Step 5 of phase 2, which requires long term
validation, is not yet addressed thoroughly in this re-
search.

5 DESIGN STRATEGIES AND
COMBINATION RULES

In this framework, we use the concept of ‘de-
sign strategy’ as a basic architectural construct
into the pattern identification process. Each de-
sign strategy is described using the common
architectural description. We use the notion
DS = {Reuse,Automate,Wrap,Migrate,MinCoordinate}
as the set of design strategies used in this paper. We
denote a setXLG to represent the architecture by
creating a component for every legacy system. This
set of components is presumed to exist. This set is
constructed using the following algorithm:

ConstructXLG (LG)

• For eachlx ∈ LG Do:

1. Xx = createNew(); /*creates and initialises a new
component*/

2. access(Xx) = api(lx);
3. tasks(Xx) = {C(fk) : fk ∈ lx};
4. XLG = XLG ∪ {Xx} /* add Xx to XLG */

Where createNew() function would create a compo-
nentXx of the same type as the components ofComp
and initialise its four features to nil (i.e. access()=
tasks()= conTo()= invBy()= nil). Whereas api(lx)
functions returns the access method that is supported
by the legacy systemlx.

5.1 Design strategies

Reuse This design strategy considers the existing
legacy systems and the functionalities they embed
as existing assets that should be utilised immedi-
ately. Based on the proposed generic architecture,

this design strategy corresponds to creating|LG|
entries inComp which have been already declared
as the content of the setXLG ⊂ Comp. The non-
automated functionalities (i.e.∀f ∈ (F all − F au))
are not addressed in this design strategy. Its corre-
sponding algorithm is:
REUSE()

• For eachXi ∈ XLGXi ∈ XLGXi ∈ XLG:
– Comp = Comp ∪ {Xi};

Automate This design strategy creates|F all − F au|
components each of which supports a new func-
tionality that does not exist in any of existing legacy
systems. This strategy implements a unified ac-
cess type for these new functionalities (i.e.∀f ∈
(F all − F au)). This is accomplished using the fol-
lowing algorithm:
AUTOMATE(ac) /*ac is the access method used*/

• For eachfk ∈ (F all − F au)fk ∈ (F all − F au)fk ∈ (F all − F au):
1. Xx = createNew ();
2. access(Xx) = ac;
3. tasks(Xx) = {C(fk)};
4. Comp = Comp ∪ {Xx};

Wrap This design strategy considers a unified access
method for all functionalities identified in the set
of legacy systems (i.e.∀fi ∈ F au). It creates a
total of |F au| components inComp each of which
corresponds to a wrapper component (i.e. for every
functionality that resides in a legacy system) . This
is accomplished using the following algorithm:
WRAP (ac)

• For eachXi ∈ XLG such thatXi ∈ CompXi ∈ XLG such thatXi ∈ CompXi ∈ XLG such thatXi ∈ Comp do:
– For eachC(fk) ∈ tasks(Xi):
1. Xx = createNew();
2. access(Xx) = ac;
3. tasks(Xx) = {CW (fk)};
4. invBy(Xi) = Xx

5. conTo(Xx) = Xi

6. Comp = Comp ∪ {Xx}

Migrate This design strategy ignores existing legacy
systems and therefore redevelops the functionali-
ties∀f ∈ F all with a unified access method. This
strategy groups each set of equivalent functionali-
ties q ∈ Q in one component. Therefore, it cre-
ates a total of|Q| new components inComp where
each new component corresponds to oneq ∈ Q
and contains a taskC(fk) for eachfk ∈ q. This is
accomplished using the following algorithm:
M IGRATE(ac) /*ac is the access method used*/

• For eachqi ∈ Qqi ∈ Qqi ∈ Q:
1. Xx = createNew ();
2. access(Xx) =ac;
3. tasks(Xx) = {C(fk) : fk ∈ qi};
4. Comp = Comp ∪ {Xx}

WEBIST 2005 - INTERNET COMPUTING

92

MinCoordinate Minimum Coordinate (MinCoordi-
nate) design strategy relates to the implementation
of everybpj ∈ BP enactment as an autonomous
component that depends directly on the activities
denoted byactivities(bp). This design strategy
mandates that anybp ∈ BP should implement
its own private copy of any required functional-
ity that is not supported in any other component
in Comp. Meaning that anf ∈ F all such that
C(f) /∈ tasks(Xi)∀Xi ∈ Comp should imple-
ment an instance off that is accessed only byXi

and thereforetasks(Xi) = tasks(Xi) ∪ {C(f)}.
This design strategy is accomplished using the fol-
lowing algorithm:
M INCOORDINATE()

1. Let BpComp =φ /* An empty set of same type as
Comp*/

2. For eachbpj ∈ BPbpj ∈ BPbpj ∈ BP :
(a) Xx = createNew ();
(b) access(Xc) = φ;
(c) tasks(Xx) = {CBL(bpj)};
(d) For each fk ∈ activities(bpi) DO:

• IF (∃Xi : C(fk) ∈ tasks(Xi))
– conTo(Xx) = conTo(Xx) ∪ {Xi};
– invBy(Xi) = invBy(Xi) ∪ {Xx};

• ELSE tasks(Xx) = tasks(Xx) ∪ {C(fk)};
(e) BpComp = BpComp ∪ {Xx};
3. Comp = Comp ∪ BpComp;

5.2 Design strategies combination
rules

The design strategies are combined by linearly apply-
ing their corresponding construction algorithms. The
order in which the participating design strategies are
combined with the aim of generating a ‘valid’ combi-
nation is significant. This order is based on associated
rank for each strategy. The first rank is for ‘Reuse and
‘Migrate’, the second is for ‘Automate’ and ‘Wrap’,
the third is for ‘MinCoordinate’ design strategy. The
naming convention for the patterns that we consider
shows the participating design strategies in the cor-
rect combining order.

We have investigated the major combining rules
that are applied to any possible design strategies com-
bination and therefore considering this combination
as either valid or invalid. The main idea for such rules
is to make sure that the combined design strategies
algorithms can form a neat architecture when applied
on any problem context specification. A neat architec-
ture would guarantee thatComp architecture facili-
tates the connectivity from any business process to all
of its required functionalities without redundancies.
The following rules are the major ones that should ap-
ply in order to consider a valid design strategies com-
bination and therefore a candidate pattern:

1. Existence of tasks that implements all BPs logic:
For everybp ∈ BP, ∃Xi : CBL(bp) ∈ tasks(Xi).

2. Existence of tasks that implement all functionalities
in F all:
For everyf ∈ F all, ∃Xi : C(f) ∈ tasks(Xi).

3. A functionality can have one and only one wrapper
component:
If CW (f) ∈ tasks(Xi) and CW (f) ∈ tasks(Xz)
such thataccess(Xi) = access(Xz) thenXi = Xz.

4. Non-redundancy of a BP logic implementation task:
If CBL(bp) ∈ tasks(Xi) andCBL(bp) ∈ tasks(Xz)
thenXi = Xz.

5. Redundancy of a functionality implementation can be
found locally in any BP that requires it if that func-
tionalities is not created publicly elsewhere:
If C(f) ∈ tasks(Xi) andC(f) ∈ tasks(Xz) : Xi 6=
Xz thenCBL(bpa) ∈ Xi andCBL(bpb) ∈ Xz : a 6=
b.

Otherwise, the generated combination will be ‘in-
valid’ and therefore it is not considered as a candidate
pattern. For instance, such invalid combinations may
generate the following cases:

I The existence of redundancy across the tasks of the
matched design strategies (e.g.∃C(f) : C(f) ∈
tasks(Xi) and ∈ tasks(Xj) whereXi andXj

are in different design strategies).

II The existence of missing tasks that one of the par-
ticipant design strategies should contain (e.g. For
anyf ∈ F all∄Xi : C(f) ∈ tasks(Xi)).

By applying these rules, we obtained seven valid com-
binations each of which constitutes candidate pat-
tern. The first five patterns are more likely to evolve
into formal patterns because they are initially iden-
tified based on practical experience and reported in
(Dabous, 2005) whereas the other two are expected
to evolve into anti- patterns because they promote the
isolation of standalone BP implementation that is ob-
solete and does not correspond to current practices.

6 CANDIDATE PATTERNS

Now we briefly discuss the architectural descrip-
tion of the five candidate patterns. Details of their
forces and consequences are discussed thoroughly in
(Dabous, 2005). We also show the architecture gen-
erated when instantiating each candidate pattern on
the selected application domain (i.e. the contents of
the setComp). Figures 4-8 illustrate visually the con-
tents of the setComp for these five architectures. In
these figures, each box (i.e. component) corresponds
to anXi ∈ Comp showing its tasks as ovals and ac-
cess method on the top of the box whereas each arrow
(i.e. link) fromXa to Xb means thatXb ∈ conTo(Xa)
andXa ∈ invBy(Xb). The patterns instantiations of

A FRAMEWORK FOR IDENTIFYING ARCHITECTURAL PATTERNS FOR E-BUSINESS APPLICATIONS

93

X
L

G

Access() = nil

CBL(BP5)

C
(M

kt
E

ve
n

tD
e

te
ct

)

C
(O

rd
e

rE
xe

M
g

t)

C
(S

tr
a

te
g

yC
n

rl
)

Access() = nil

CBL(BP4)

C
(M

kt
E

ve
n

tD
e

te
ct

)

C
(O

rd
e

rE
x

e
M

g
t)

C
(S

tr
a

te
g

yC
n

rl
)

Access() = nil

CBL(BP3)

C(Regulator)

Access() =nil

CBL(BP2)

Access() = nil

CBL(BP1)

C(BAnalytics)

Access() = API1

C(TeSim1)

C(RealTimesim1)

C(CurrDaySim1)

Access() = API3

C(RealTime3)

C(CurrDay3)

C(TE3)

Access() = API4

C(VisualModel4)

Access() = API2

C(CalibRun2)

C(RealTimeAlerts2)

C(IntraDay2)

C(InterDay2)

C(Analytic2)

Figure 4: Pt1 applied on the application domain

X
L

G

SO

C
(M

kt
E

ve
n

tD
e

te
ct

)

SO

C
(O

rd
e

rE
x

e
M

g
t)

SO

C
(S

tr
a

te
g

yC
n

rl
)

SO

C
(R

e
g

u
la

to
r)

SO

C
(B

A
n

a
ly

ti
c
s)

Access() = API3

C(RealTime3)

C(CurrDay3)

C(TE3)

Access() = API4

C(VisualModel4)

Access() = API1

C(TeSim1)

C(RealTimesim1)

C(CurrDaySim1)

Access() = API2

C(CalibRun2)

C(RealTimeAlerts2)

C(IntraDay2)

C(InterDay2)

C(Analytic2)

Access() = nil

CBL(BP1)

Access() =nil

CBL(BP2)

Access() = nil

CBL(BP3)

Access() = nil

CBL(BP4)

Access() = nil

CBL(BP5)

Figure 5: Pt2 applied on the application domain

the application domain correspond to the second step
of the second phase in the proposed framework. We
provide our naming convention for each pattern as fol-
lows:

Reuse+MinCoordinate (Pt1) This pattern considers
generating invocations to the required functional-
ities across legacy system by direct invocations
through the APIs of these systems. On the other
hand, each BP implements its local program code
for each of its activities that have no corresponding
functionality in any of the legacy systems. Figure
4 shows the architecture of Pt1 instantiation on the
selected application domain.

Reuse+Automate+MinCoordinate (Pt2)This pat-
tern considers generating an invocation to the re-
quired functionalities across legacy system by di-
rect invocation through the APIs of these sys-
tems. It also considers implementing all activities
of BPs that have no correspondence in any of the
legacy systems as global e-services with advertised
service-based interface. Figure 5 shows the archi-
tecture of Pt2 instantiation on the selected applica-
tion domain.

Reuse+Wrap+Automate+MinCoordinate (Pt3)
This pattern considers providing a unified service-
based interface to every particular functionality
across legacy systems. This provision is achieved
by developing service-based Wraps. It also con-
siders implementing all activities of BPs that have
no correspondence in any of the legacy systems

X
L

G

Access() = nil

CBL(BP5)

Access() = nil

CBL(BP3)

Access() =nil

CBL(BP2)

Access() = nil

CBL(BP1)

SO

C
(M

k
tE

v
e

nt
D

e
te

ct
)

SO

C
(O

rd
e

rE
xe

M
g

t)

SO

C
(S

tr
a

te
g

yC
n

rl
)

SO

C
(R

e
g

u
la

to
r)

SO

C
(B

A
n

a
ly

tic
s)

SO

C
W

(R
e

a
lT

im
e

S
im

1
)

SO

C
W

(C
u

rr
D

a
yS

im
1

)

SO

C
W

(T
e

S
im

1
)

SO

C
W

(V
is

u
a

lM
o

de
l4

)

SO

C
W

(T
E

3
)

SO

C
W

(C
u

rr
D

a
y3

)

SO

C
W

(R
e

a
lT

im
e

3
)

SO

C
W

(A
n

a
ly

tic
2

)

SO

C
W

(I
n

te
rD

ay
2

)

SO

C
W

(I
n

tr
a

D
a

y2
)

SO

C
W

(R
e

a
lT

im
e

A
le

rt
s2

)

SO

C
W

(C
a

lib
ru

n2
)

Access() = API1

C(TeSim1)

C(RealTimeSim1)

C(CurrDaySim1)

Access() = API3

C(RealTime3)

C(CurrDay3)

C(TE3)

Access() = API4

C(VisualModel4)

Access() = API2

C(CalibRun2)

C(RealTimeAlerts2)

C(IntraDay2)

C(InterDay2)

C(Analytic2)

Access() = SO

CBL(BP4)

Figure 6: Pt3 applied on the application domain

X
L

G

SO

C
W

(R
e

a
lT

im
e

S
im

1
)

SO

C
W

(C
u

rr
D

a
yS

im
1

)

SO
C

W
(T

e
S

im
1

)
SO

C
W

(V
is

u
a

lM
o

d
e

l4
)

SO

C
W

(T
E

3
)

SO

C
W

(C
u

rr
D

a
y3

)

SO

C
W

(R
e

a
lT

im
e

3
)

SO

C
W

(A
n

a
ly

tic
2
)

SO

C
W

(I
n

te
rD

a
y2

)

SO

C
W

(I
n

tr
a

D
a

y2
)

SO

C
W

(R
e

a
lT

im
e

A
le

rt
s

2)

SO

C
W

(C
a

lib
ru

n2
)

Access() = API1

C(TeSim1)

C(RealTimeSim1)

C(CurrDaySim1)

Access() = API3

C(RealTime3)

C(CurrDay3)

C(TE3)

Access() = API4

C(VisualModel4)

Access() = nil

CBL(BP1)

C(BAnalytics)

Access() =nil

CBL(BP2)

Access() = nil

CBL(BP3)

C(Regulator)

Access() = nil

CBL(BP4)

C
(M

kt
E

ve
n

tD
e

te
ct

)

C
(O

rd
e

rE
xe

M
g

t)

C
(S

tr
a

te
g

yC
n

rl
)

Access() = nil

CBL(BP5)

C
(M

kt
E

ve
n

tD
e

te
ct

)

C
(O

rd
e

rE
xe

M
g

t)

C
(S

tr
a

te
g

yC
n

r)
l

Access() = API2

C(CalibRun2)

C(RealTimeAlerts2)

C(IntraDay2)

C(InterDay2)

C(Analytic2)

Figure 7: Pt4 applied on the application domain

as global e- services with advertised service-based
interface. Figure 6 shows the architecture of Pt3
instantiation on the selected application domain.

Reuse+Wrap+MinCoordinate (Pt4) This pattern
considers providing a unified service-based inter-
face to every particular required function- ality
across legacy systems. This provision is achieved
by developing service-based Wraps. On the other
hand, each BP implements its local program code
for each of its activities that have no corresponding
functionality in any of the legacy systems. Figure
7 shows the architecture of Pt4 instantiation on the
selected application domain.

Migrate+MinCoordinate (Pt5) This pattern con-
siders the disposal or abandoning existing legacy
systems. Therefore, starting from scratch, this pat-
tern migrates the implementation of required func-
tionalities through a re-engineering/automation
process into global e-services with advertised
service-based interface. In this process, each
group of equivalent functionalities are reengineered
within a single program that supports one interface.

WEBIST 2005 - INTERNET COMPUTING

94

SO

C
(I

n
te

rD
a

y2
)

SO

C
(V

is
u

a
lM

o
d

el
4

)

SO

C
(R

e
a

lT
im

e
A

le
rt

s2
)

SO

C
(C

a
lb

R
u

n
2

)

SO

C
(M

k
tE

v
e

nt
D

e
te

ct
)

SO

C
(O

rd
e

rE
xe

M
g

m
)

SO

C
(S

tr
a

te
gy

C
n

rl
)

SO

C
(R

e
g

u
la

to
r)

Access= SO

C(Banalytic)

C(Analytic2)

Access = SO

C(TeSim1)

C(TE3)

Access = SO

C(RealTimeSim1)

C(RealTime3)

Access = SO

C(CurrDaySim1)

C(IntraDay2)

C(CurrDay3)

Access() = nil

CBL(BP1)

Access() =nil

CBL(BP2)

Access() = nil

CBL(BP3)

Access() = nil

CBL(BP4)

Access() = nil

CBL(BP5)

Figure 8: Pt5 applied on the application domain

Figure 8 shows the architecture of Pt5 instantiation
on the selected application domain.

MinCoordinate (Pt6) and Automate+MinCo. (Pt7)
are more likely to evolve into anti-patterns because
they promote the isolation and standalone BP
implementation that is obsolete and does not
correspond to current practices.

7 CONCLUSION

In this paper, we presented and discussed the basic
components of a systematic extensible framework for
identifying patterns for the architectural design of a
category of applications in the e-business domain.
This work is motivated by three factors. The first one
is the availability of five architectural patterns that are
identified and formalised in (Dabous, 2005) based on
practical experience in developing e-business appli-
cations that utilise legacy functionality in the domain
of e-finance. The second one is the quality models
reported in (Dabous, 2005; Dabous et al., 2005) that
estimate the patterns consequences for a given appli-
cation domain specification. The third one is the ar-
chitectural patterns selection method based on AHP
that is reported in (Al-Naeem et al., 2005b; Al-Naeem
et al., 2005a).

The proposed framework is systematic and extensi-
ble. It is systematic since the formalisation of the de-
sign strategies, the candidate patterns and the quality
models uses the same common architectural descrip-
tion. It is also extensible since the identification of
each extra design strategy would duplicate the number
of strategies combinations and therefore possibly trig-
gers extra candidate patterns. In (Dabous, 2005), we
illustrated the impact of introducing additional two
strategies on identifying more candidate patterns.

Current work focuses on providing tool support for
automatic generation of the candidate patterns archi-
tectures for a given application domain specification
and for ranking the architectures generated by instan-
tiating these patterns with accordance to their appro-
priateness based on both the estimations provided by

the quality models and the preferences for such qual-
ity provided by stakeholders.

REFERENCES

Al-Naeem, T., Dabous, F. T., Rabhi, F. A., and Beatallah,
B. (2005a). Formulating the architectural design of
enterprise applications as a search problem. InAus-
tralian Software Engineering Conference (ASWEC
2005), Australia. Computer society Press.

Al-Naeem, T., Dabous, F. T., Rabhi, F. A., and Benatal-
lah, B. (2005b). Quantitative evaluation of enterprise
integration patterns. In7th Int. Conf. on Enterprise
Information Systems (ICEIS05), Miami, USA.

Anderson, D., Sweeny, D., and Williams, T. (2002).An In-
troduction to management Science: Quantitative Ap-
proaches to Decision Amking. South-Western Educa-
tional Publishing.

Dabous, F. T. (2005).Pattern-Based Approach for the Ar-
chitectural Design of e-Business Applications. Phd
thesis, School of Information Systems, Technology
and Management, The University of New South
Wales, Australia. (to be submitted in Apr 2005).

Dabous, F. T., Rabhi, F. A., and Yu, H. (2003). Perfor-
mance issues in integrating a capital market surveil-
lance system. InProceedings of the 4th International
Conference on Web Information Systems engineering
(WISE03), Rome, Italy.

Dabous, F. T., Rabhi, F. A., Yu, H., and Al-Naeem, T.
(2005). Estimating patterns consequences for the
architectural design of e-business applications. In
7th Int. Conf. on Enterprise Information Systems
(ICEIS05), Miami, USA.

Harris, L. (2003). Trading and Exchanges: Market Mi-
crostructure for Practitioners. Oxford University
Press.

Rabhi, F. A., Dabous, F. T., Chu, R. Y., and Tan, G. E.
(2003). SMARTS benchmarking, prototyping & per-
formance prediction. Technical Report CRCPA5005,
Capital Market Cooperative Research Center (CM-
CRC).

Yu, H., Rabhi, F. A., and Dabous, F. T. (2004). An ex-
change service for financial markets. In6th Interna-
tional Conference on Enterprise Information Systems
(ICEIS04), Porto, Portugal.

A FRAMEWORK FOR IDENTIFYING ARCHITECTURAL PATTERNS FOR E-BUSINESS APPLICATIONS

95

