
THE AUTOTUTOR 3 ARCHITECTURE
A software architecture for an expandable, high-availability ITS

Patrick Chipman, Andrew Olney, Arthur C. Graesser
Institute for Intelligent Systems, University of Memphis, 365 Innovation Drive, Memphis, TN, USA

Keywords: Intelligent tutoring systems, software architecture, Internet-based instruction

Abstract: Providing high quality of service over the Internet to a variety of clients while simultaneously providing
good pedagogy and extensibility for content creators and developers are key issues in the design of the
computational architecture of an intelligent tutoring system (ITS). In this paper, we describe an ITS
architecture that attempts to address both issues using a distributed hub-and-spoke metaphor similar to that
of the DARPA Galaxy Communicator. This architecture is described in the context of the natural language
ITS that uses it, AutoTutor 3.

1 INTRODUCTION

A great deal of advancement in the state of the art of
intelligent tutoring systems (ITS) has occurred in the
last several years. Primarily, these advancements
have been focused on improving pedagogical
strategies by incorporating established psychological
research on human tutoring into tutoring systems
(Graesser, Person, & Magliano, 1995; Aleven &
Koedinger, 2002; VanLehn, Jones, & Chi, 1992);
adding superior student knowledge modelling such
as model-tracing (VanLehn et al., 2000); providing
advanced authoring tools to facilitate the rapid use
of the ITS in new domains of knowledge, or with
different sets of learners with different levels of
skills (Ainsworth & Grimshaw, 2002); or improving
the interface by adding animated characters such as
“talking heads,” also known as animated
pedagogical agents (Johnson, Rickel, & Lester,
2000), or natural language dialogue (Jordan, Rosé,
& VanLehn, 2001).

However, behind all of these systems and their
advancements must reside some form of
computational architecture. In many cases, this
architecture is monolithic, rarely discussed, and
generally irrelevant. Intelligent tutoring systems that
reside on modern desktop computers have vast
resources available for their processing and a high
user tolerance for failure, especially if the system is
visually appealing, quick to respond, and otherwise
meets the user’s typical expectations of a “typical”
application (Bouch & Sasse, 1999). In fact, the
presence of an animated pedagogical agent can

improve the subjective likeability of a system
considerably (Moreno, Klettke, Nibbaragandla,
Graesser, & TRG, 2002), which would further
enhance the user’s experience and allow him to
overlook any flaws in the underlying software
(Bouch & Sasse, 1999).

However, for a web-based or Internet-based
system, where the target platform’s resources are
often much lower than that of a modern desktop
computer and much of the processing must be
handled on a remote server for potentially hundreds
or thousands of simultaneous users, architectures
that provide consistent levels of availability and
latency are mandatory if the system is to be adopted
by users (Bhatti, Bouch, & Kuchinsky, 2000).
Furthermore, such architectures must be able to
handle the sorts of advancements in ITS technology
that come at a rapid pace while simultaneously
allowing developers and content creators to achieve
domain and tutoring strategy independence. If all of
these criteria are not met to some degree, it is
probable that user acceptance, both with learners and
content creators, will be low and will confine the
ITS to laboratory use.

In this paper, we discuss the architecture of the
third version of the venerable AutoTutor natural
dialogue intelligent tutoring system. This
architecture was designed specifically to balance the
criteria of high availability and expandability,
thereby offering a quality user experience while
providing the extensibility necessary for the creation
of more advanced ITSes in the future. Additionally,
the architecture is sufficiently generic that other

466
Chipman P., Olney A. and C. Graesser A. (2005).
THE AUTOTUTOR 3 ARCHITECTURE - A software architecture for an expandable, high-availability ITS.
In Proceedings of the First International Conference on Web Information Systems and Technologies, pages 466-473
DOI: 10.5220/0001233504660473
Copyright c© SciTePress

systems can be built around its principles; it is not
solely restricted to use with our AutoTutor system.

2 WHAT IS AUTOTUTOR?

A discussion of the architecture of AutoTutor 3
would not be complete without an explanation of the
system itself. AutoTutor is a complex system that
simulates a human or ideal tutor by holding a
conversation with the learner in natural language
(Graesser, Lu, et. al., in press). AutoTutor presents a
series of questions or problems that require
approximately a paragraph of information to answer
correctly. An example question in conceptual
physics is “When a car without headrests on the
seats is struck from behind, the passengers often
suffer neck injuries. Why do passengers get neck
injuries in this situation?” A complete answer to this
question is approximately 3-7 sentences in length.
AutoTutor assists the learner in the construction of
an improved answer that draws out more of the
learner’s knowledge and that adaptively corrects

problems with the answer. The dialogue between
AutoTutor and the learner typically lasts 50-200
conversational turns for one question. Figure 1
shows an example of the AutoTutor 3 interface.

The AutoTutor system has undergone a variety
of empirical tests to validate its pedagogical and
conversational efficacy in both the domains of
computer literacy (Graesser, Lu, et. al., in press) and
conceptual physics (Graesser, Jackson, et. al., 2003).
A “bystander Turing test” was performed to validate
AutoTutor’s conversational smoothness. In such an
experiment, a subject is shown a section of tutorial
dialogue randomly selected from real AutoTutor
transcripts in which, half the time, the tutor move
generated by AutoTutor has been replaced by a
move generated by a human expert tutor. The
subjects in this experiment, the bystanders, are asked
to specify if the tutor move in question was
generated by a human or a computer. The bystanders
were wholly unable to make this distinction
(Bautista, Person, & Graesser, 2002). Tests of
pedagogical effectiveness have shown learning gains
of 0.2 to 1.5 sigma (standard deviation units) with a

Figure 1: The AutoTutor 3 user interface.

THE AUTOTUTOR 3 ARCHITECTURE: A software architecture for an expandable, high-availability ITS

467

mean of 0.8 sigma or around one letter grade of
improvement. The performance varies based on the
type of measure used and the content domain
(Graesser, Jackson, et al., 2003). This is comparable
to both the performance of unskilled human tutors,
who produce learning gains of around 0.4 sigma, or
half a letter grade of improvement (Cohen, Kulik, &
Kulik, 1982), as well as to the performance of other
intelligent tutoring systems without natural language
dialogue, which produce learning gains of around
1.0 sigma (Corbett, 2001).

3 SYSTEM ARCHITECTURE

It has long been the desire of the Tutoring Research
Group to offer AutoTutor to the widest audience
possible, both in terms of learners and content
creators, because of its impressive performance in
empirical testing. As opposed to many intelligent
tutoring systems, AutoTutor offers a natural
language interface; this is posited to be critical for
future ITS development (Jordan, Rosé, & VanLehn,
2001). However, this natural language interface
requires a great deal of computational resources in
both processing power and storage, making it
difficult to deploy to desktop computers that are not
state of the art. Furthermore, content creators offer
up a great deal of intellectual property when creating

the curriculum scripts that dictate the output of the
system. It is unlikely these individuals will be
willing to provide their content for local use by any
number of learners. To solve both of these problems,
it was decided to utilize a client-server architecture
in which the AutoTutor 3 server resides at a fixed
location and learners and content creators access its
functionality remotely.

 The system architecture is somewhat related to
the DARPA Galaxy Communicator model, in which
a variety of modules communicate, mediated by a
central “hub” (Galaxy Communicator
Documentation). In the AutoTutor 3 architecture,
outlined in Figure 2, a central object known as the
Hub (the octagon), hosted in the AutoTutor 3 server
software, passes an object that contains the state of
the system, the State Table (not shown), between a
set of Modules (circles) that alter the state without
having any specific knowledge of each other; the
order of this process is specified by the Hub and, for
the current AutoTutor 3 system, is expressed in the
figure as a number after each Module’s name. Each
Module may access a number of Utilities (squares)
that provide services through published interfaces.
The State Table is sent to a variety of potential client
types using one of many Multi-Protocol Personal
Translators, or Muppets (shaded circle), that convert
the State Table into a format that the client can
understand. The objects contained within the dashed

Language
Analysis

Module (1)

Logging
Module (4)

Assessments
Module (2)

Dialogue
Management
Module (3)

Curriculum
Scripts Utility

Latent Semantic
Analysis Utility

Muppet

Client

Hub

Figure 2: An overview of the AutoTutor 3 Architecture.

WEBIST 2005 - E-LEARNING

468

rectangle exist together in the main AutoTutor 3
server; all of the other objects are served through our
custom-written generic object server, the Module
Server, and can each exist on the same or different
machines as load demands.

3.1 The .NET Framework and
Remoting

The AutoTutor 3 system and its underlying
architecture are implemented in a combination of C#
and Visual Basic .NET, using the .NET Framework
version 1.1 and the Common Language Runtime by
Microsoft Corporation. The CLR provides a variety
of advantages, not the least of which is the generic
remote procedure call system known as .NET
Remoting. This part of the Framework allows
remote objects to be accessed as if they were inside
the AutoTutor server process; short of a call into the
Framework to “activate” the target object (whether it
is a Module or a Utility), the object can be accessed
identically across the network or on the local
machine (Microsoft .NET Technology Overview).
By using the Remoting system, it is possible for
AutoTutor 3 Modules and Utilities to be split across
multiple computers or multiple processes as required
to “scale out” as load increases. The underlying
complexities of accessing these remote objects are
hidden behind the AT3Communicator class and the
Remoting system.

Remoting provides a binary communication
channel that, in our internal tests, allows the entire
State Table for any turn to be conveyed using under
12 kilobytes of data, thereby reducing network
transfer latency within the system and to clients. Our
testing of the server under common experimental
loads of around 30 simultaneous users reveals that
the network latency of a system where the Modules
and Utilities exist on separate machines is less than 1
ms, given a 100BaseT Ethernet interconnect.

3.2 State Table

In many ways, the State Table is the core of the
AutoTutor 3 architecture. This extensible class
contains the complete state of the system for any
particular student interaction with the tutor. It
normally survives for an entire problem and is
discarded at the end of a problem. The State Table
provides a logical separation of the data upon which
the Modules work from the algorithms of the
Modules themselves; in this way, it acts both as the
storage space for the system’s student model, as well
as a sort of command object if one considers the
architecture as an implementation of the chain-of-

responsibility design pattern. Individual Modules
store the results of their processing in the State
Table. These results can then be read and further
processed by other Modules, or simply ignored by
other Modules if they are irrelevant to their
processing. Because the state of the system is
loosely coupled to the Modules that use it, it is
relatively easy for new Modules to be added to the
system to work on the data contained within the
State Table.

The State Table is a class that is tied to a specific
inheritance chain of interfaces. This ensures that
Modules are themselves loosely coupled to the
internal structure of the State Table; a Module
created for an earlier implementation and older
interface is guaranteed to work with newer versions
of the State Table, because backward compatibility
is mandated by the interface.

3.3 Hub

The Hub is the central manager of the AutoTutor
architecture. This extremely simple class has only
one function: to call each of the Modules of which it
knows in the sequence required to produce a
complete State Table. The AutoTutor server
software handles loading the Module references into
the Hub, which then makes the calls using
Remoting. While it would seem necessary to rewrite
the Hub whenever adding a new Module to the
system, the current implementation of the Hub calls
each of the Modules of which it knows in the
sequence in which they were loaded; as this load
sequence can be specified to the server in its
configuration file, as long as dependencies in which
Modules must be called more than once are avoided,
the standard Hub implementation should be
sufficient.

3.4 Modules and the
AT3Communicator

Each Module in the system, as shown in Figure 2,
represents a separate stage in the processing of a
student move and the generation of an appropriate
tutor turn. The internal mechanisms AutoTutor uses
in each of those stages are covered in detail
elsewhere (Olney, Louwerse, Mathews, Marineau,
Mitchell, & Graesser, 2003; Mathews, Jackson,
Olney, Chipman, & Graesser 2003; Graesser, Lu, et
al. in press) and will not be detailed here. Each
Module inherits from a master class called
“AT3Communicator,” which encapsulates the
necessary public methods and implementations to
link the Module to the system by taking messages

THE AUTOTUTOR 3 ARCHITECTURE: A software architecture for an expandable, high-availability ITS

469

and their associated State Tables from the Hub,
acquiring references to the Utility objects, and
handling thread synchronization should the Module
be called by multiple users, and therefore multiple
threads of processing, at once.

Because all of this functionality is encapsulated
in this base class, those who wish to extend the
capabilities of the AutoTutor system by adding a
new Module or altering an existing one need only
override a single virtual method called “Execute,”
which is analogous to a “Main” function in standard
procedural programming. This overridden method is
called by the base class and a copy of the State Table
is passed in; the Module returns this copy with any
necessary modifications. Utilities may be called by
reading their references from a hash table, then
calling methods on those references. The Remoting
system, as previously mentioned, handles the
resolution of those method calls.

While the AT3Communicator base class does
handle thread synchronization with regards to the
State Table itself and the Utility references, thread
safety is not assured if the Module developer opts to
add member variables to his Module’s class.
However, this problem can be readily avoided by
using static variables in the Execute method and
following standard programming practices that argue
against the use of global variables; alternatively, the
Module programmer can use the State Table to store
the internal state of his module between calls. The
current Dialogue Management Module uses this
technique.

3.5 Utilities

The Utilities of the architecture are external objects
called by Modules using Remoting. Unlike Modules,
these objects have no fixed base class or interfaces,
nor are they called by the Hub. Therefore, thread
safety is not hidden from the developer. The
complexities of Remoting are hidden from the
Utility developer by the Module Server, however. In
return, the developer of a Utility receives the
flexibility to define his own interface and further
gains the ability for his object’s methods to be called
directly from Modules, which can then share its
functionality. In AutoTutor 3, we have chosen to use
Utilities to encapsulate functionality used by
multiple Modules, such as the Latent Semantic
Analysis used to evaluate the similarity of strings
(and thus the quality of student responses), or the
Curriculum Scripts that dictate the pedagogical
moves of the system and provide domain
independence, as detailed by Mathews et al. (2003).

3.6 Muppets

Multi-Protocol Personal Translators (“Muppets”) are
the “glue” that connect clients to the system. They
exist within the main AutoTutor server and translate
the State Table into a format that a client can
understand. Muppets allow the server to connect to
clients in any programming language with any set of
capabilities; smart clients written in a .NET
language can connect to a Remoting Muppet, for
instance, and have access to the entire State Table. A
web browser could connect to a Web Server Muppet
that turns the State Table into a web page with
sufficient session management to keep track of each
user connecting to the web site. Mobile phones
could use an Instant Messaging Muppet that
emulates an Instant Messaging service or chat room.

Muppets are perhaps the most complicated part
of the system to develop, as they must deal with
session management and network protocols; none of
these low level details are hidden. To facilitate
Muppet development and use of AutoTutor on
multiple platforms, the architecture was developed
with three Muppets: a .NET Remoting Muppet for
smart clients, a text-based Muppet that uses simple
TCP sockets, and a web-based Muppet that provides
a simple World Wide Web interface.

3.7 Server Software

The AutoTutor 3 architecture uses only two pieces
of server software: the AutoTutor Server, which
handles Muppets and Hubs, and the Module Server,
which is a generic server for offering .NET objects
over Remoting. The AutoTutor Server is designed to
bootstrap the entire system by using its configuration
file to locate, instantiate, and initialize Muppets,
Hubs, and all of the Modules and Utilities used by
them. Each instance of an AutoTutor Server is
capable of handling multiple Muppets and Hubs
with the same or different sets of Modules and
Utilities, which gives it the ability to support
different “versions” of AutoTutor on a single
machine that differ only in their interface to clients
or in their internal processing steps.

The Module Server is not specific to this
architecture. It is simply a generic server that can
instantiate and offer objects or parts of objects, as
defined by interfaces, through .NET Remoting. It is
crucial to the proper operation of the architecture,
but it can be used by any project in which Common
Language Runtime objects need to be offered. Other
distributed systems may readily make use of this
server without implementing any part of the
AutoTutor 3 architecture.

WEBIST 2005 - E-LEARNING

470

3.8 Client Software

Through the use of Muppets, specific client software
is not required to use systems built on the AutoTutor
3 architecture. However, a smart client with support
for plug-ins, an animated pedagogical agent, 3-D
simulations, and client-side processing of data is
available. Additionally, the Web Muppet provides a
text-based interface on the World Wide Web.

4 EMPIRICAL TESTS OF
PERFORMANCE

The AutoTutor 3 system was completed
approximately one year ago. It is a complete rewrite
of the older AutoTutor 2 system (Graesser,
VanLehn, Rosé, Jordan, & Harter, 2001). As such,
empirical tests both of its ability to mimic this older
system’s abilities while adding new functionality
and also of its architecture’s raw performance are
ongoing. Thus far, empirical tests look promising,
with the AutoTutor 3 system matching the
pedagogical performance of the AutoTutor 2 system
and further enhancing it with the addition of 3-D
simulations within the domain of conceptual
physics.

With regards to the architecture’s performance,
internal profiling reveals that network latencies
between components are less than 1 ms, though this
is of course likely to increase if the components are
further separated over a larger network. The
Modules and Utilities of AutoTutor are CPU bound;
their memory requirements are roughly constant,
requiring only approximately another 100 kilobytes
per simultaneous user atop a basic memory footprint
of approximately 180 megabytes. Again, these
values will vary based on the Modules used, but
profiling shows that the architecture itself
contributes very little to the memory or CPU
footprint of the AutoTutor 3 processes.

Based on the average size of the State Tables in
our internal stress testing using active users and
distributed load generation with multiple computers,
we estimate that any individual AutoTutor server
instance can support at maximum approximately 800
simultaneous users, assuming all of the components
of the system are located on a single server machine
(a Pentium Xeon 1.4 gigahertz with 1 gigabyte of
RAM in our tests) and the clients connect using
100BaseT Ethernet. Our testing of the system’s
architectural performance in the course of empirical
testing of its pedagogy shows that it can readily
support at least 30 simultaneous users with no
detectable loss of responsiveness. A large study in

which the system is used to support remote, naïve
learners at other universities is in progress, but
preliminary results have shown that a single
AutoTutor 3 server is more than capable of
providing advanced, natural language intelligent
tutoring services to several hundred simultaneous
users across the Internet while maintaining a high
quality of service. Further empirical testing of the
system’s performance in the context of new
experiments is currently in progress and should be
completed by the end of 2005.

5 FUTURE DIRECTIONS

Beyond the need for further empirical performance
testing, there is room for improvement in this
architecture. At the moment, any form of load
balancing or clustering must be handled manually by
those hosting AutoTutor servers; monitoring
application load and responding to it is a difficult
and time-consuming task for system administrators.
Future versions of this architecture, which will
maintain backwards compatibility and provide these
advantages to all existing code by leveraging the
class inheritance system, will provide adaptive load
balancing services through the strategic use of
threading and dynamic load shedding. This will
allow other computers to dynamically take over
parts of the AutoTutor processing when the server is
overloaded, or will allow a Muppet to transparently
redirect a learner to a less crowded server providing
the same content. Techniques such as the
independent event queues and controllers of the
SEDA architecture (Welsh, Culler, & Brewer, 2001)
may be used to provide better quality of service
under extremely heavy loads.

To make the AutoTutor system itself and not just
its architecture more appealing to content creators,
support for authoring tools that can manipulate the
internal state of the Modules (such as the
pedagogical strategies of the Dialogue Management
Module) will be added, along with licensing support
that can restrict use of tutoring systems based on this
architecture, including AutoTutor, to those
authorized to use the intellectual property contained
within.

AUTHOR NOTE

The Tutoring Research Group (TRG) is an
interdisciplinary research team comprised of
approximately 35 researchers from psychology,
computer science, physics, and education (visit

THE AUTOTUTOR 3 ARCHITECTURE: A software architecture for an expandable, high-availability ITS

471

http://www.autotutor.org). The research on
AutoTutor was supported by the National Science
Foundation (SBR 9720314, REC 0106965, REC
0126265, ITR 0325428) and the DoD
Multidisciplinary University Research Initiative
(MURI) administered by ONR under grant N00014-
00-1-0600. Any opinions, findings, and conclusions
or recommendations expressed in this material are
those of the authors and do not necessarily reflect
the views of DoD, ONR, or NSF.

REFERENCES

Ainsworth, S. & Grimshaw, S (2002). Evaluating the
Effectiveness and Efficiency of the REDEEM
Intelligent Tutoring System Authoring Tool. Retrieved
October 26, 2004, from the University of Nottingham,
ESRC Centre for Research in Development,
Instruction, and Training web site:
www.psychology.nottingham.ac.uk/staff/sea/techreport
_69.pdf

Aleven, V. & Koedinger, K. R. (2002). An effective
metacognitive strategy: Learning by doing and
explaining with a computer-based Cognitive Tutor.
Cognitive Science, 26, 147-179.

Bautista, K. Person, N., Graesser, A. C., & Tutoring
Research Group (2002). Human or computer?
AutoTutor in a bystander Turing test. In Proceedings
of the Sixth International Conference on Intelligent
Tutoring Systems (pp. 821-830). Berlin, Germany:
Springer-Verlag.

Bhatti, N., Bouch, A., & Kuchinsky, A. (2000).
Integrating User-Perceived Quality into Web Server
Design. In Proceedings of the Ninth International
World Wide Web Conference. May 2000. Amsterdam.
Retrieved January 22, 2005 from:
http://www9.org/w9cdrom/92/92.html

Bouch, A. & Sasse, M. A. (1999). It ain't what you charge
it's the way that you do it: A user perspective of
network QoS and pricing. In Proceedings of IM'99.
Boston: IFIP.

Cohen, P. A., Kulik, J. A., & Kulik, C. C. (1982).
Educational outcomes of tutoring: A meta-analysis of
findings, American Educational Research Journal, 19,
237-248.

Corbett, A. T. (2001). Cognitive computer tutors: Solving
the two-sigma problem. In User Modeling:
Proceedings of the Eighth Annual Conference (pp.
137-147). Berlin, Germany: Springer-Verlag.

Galaxy Communicator Documentation. (n.d.) Retrieved
December 17, 2004, from
http://communicator.sourceforge.net/sites/MITRE/dist
ributions/GalaxyCommunicator/docs/manual/index.ht
ml

Graesser, A. C., Jackson, G. T., Mathews, E. C., Mitchell,
H. H., Olney, A., Ventura, M., et al. (2003).
Why/AutoTutor: A test of learning gains from a
physics tutor with natural language dialogue. In
Proceedings of the 25th Annual Conference of the
Cognitive Science Society (pp. 1-6). Boston, MA:
Cognitive Science Society.

Graesser, A. C., Lu, S., Jackson, G. T., Mitchell, H.,
Ventura, M., Olney, A., & Louwerse, M. M. (in press).
AutoTutor: A tutor with dialogue in natural language.
Behavioral Research Methods, Instruments, and
Computers.

Graesser, A. C., Person, N. K., & Magliano, J. P. (1995).
Collaborative dialogue patterns in naturalistic one-on-
one tutoring. Applied Cognitive Psychology, 9, 359-
387.

Graesser, A. C., VanLehn, K., Rosé, C., Jordan, P., &
Harter, D. (2001). Intelligent tutoring systems with
conversational dialogue. AI Magazine, 22, 39-51.

Johnson, W. L., Rickel, J. W., & Lester, J. C. (2000).
Animated pedagogical agents: Face-to-face interaction
in interactive learning environments. International
Journal of Artificial Intelligence in Education, 11, 47-
78.

Jordan, P., Rosé, C., & VanLehn, K. (2001). Tools for
authoring tutorial dialogue knowledge. In
Proceedings of AI in Education 2001 Conference.
May 2001. Amsterdam: IOS Press.

Mathews, E. C., Jackson, G. T., Olney, A., Chipman, P. &
Graesser, A. C. (2003). Achieving Domain
Independence in AutoTutor. In N. Callaos, M.
Margenstern, J. Zhang, O. Castillo, E. Doberkat
(Eds.), The Seventh World Multiconference on
Systemics, Cybernetics, and Informatics Proceedings:
Computer Science and Engineerings I, Vol. 5 (pp. 172-
176). Orlando: IIIS.

Microsoft .NET Technology Overview. (n.d.) Seattle, WA:
Microsoft Corp. Retrieved October 11, 2004, from:
http://msdn.microsoft.com/netframework/technologyin
fo/overview/default.aspx

Moreno, K. N., Klettke, B., Nibbaragandla, K., Graesser,
A. C., & the Tutoring Research Group (2002).
Perceived characteristics and pedagogical efficacy of
animated conversational agents. In S. A. Cerri, G.
Gouarderes, & F. Paraguacu (Eds.), Intelligent
Tutoring Systems 2002 (pp. 963-971). Berlin,
Germany: Springer.

Olney, A., Louwerse, M. M., Mathews, E. C., Marineau,
J., Mitchell, H. H., & Graesser, A. C. (2003).
Utterance classification in AutoTutor. In Building
Educational Applications using Natural Language
Processing: Proceedings of the Human Language
Technology - North American Chapter of the
Association for Computational Linguistics Conference
2003 Workshop (pp. 1-8). Philadelphia: Association
for Computational Linguistics.

WEBIST 2005 - E-LEARNING

472

VanLehn, K., Freedman, R., Jordan, P., Murray, C., Osan,
R., Ringenberg, M., Rosé, C., Schulze, K., Shelby, R.,
Treacy, D., Weinstein, A., & Wintersgill, M. (2000).
Fading and Deepening: The Next Steps for Andes and
Other Model-Tracing Tutors. In Intelligent Tutoring
Systems: Fifth International Conference (ITS 2000),
Montreal. Springer-Verlag Lecture Notes in Computer
Science.

VanLehn, K., Jones, R. M., & Chi, M. T. H. (1992). A
model of the self-explanation effect. Journal of the
Learning Sciences, 2, 1-60.

Welsh, M., Culler, D., & Brewer, E. (2001). SEDA: An
architecture for well-conditioned, scalable internet
services. In Proceedings of the Eighteenth Symposium
on Operating Systems Principles (SOSP-18) (pp. 230-
243). ACM Press.

THE AUTOTUTOR 3 ARCHITECTURE: A software architecture for an expandable, high-availability ITS

473

