
UDDI ACCESS CONTROL FOR THE EXTENDED ENTERPRISE

Robert Steele, Juan Dai
University of Technology, Sydney, PO Box 123, Broadway, NSW 2007

Keywords: UDDI, access control, extended enterprise

Abstract: An Extended Enterprise is comprised of not only the enterprise itself but also the enterprise’s suppliers,
clients and other associated organizations. The Extended Enterprise, in response to business needs and
decisions, can dynamically alter these interrelationships, for example possibly swapping out some partners
and swapping in others. Web services are an appropriate technology choice to facilitate the Extended
Enterprise via supporting interoperability. Furthermore, the UDDI Web service standard and in particular a
private UDDI registry can enable partner organizations to lookup and discover services of their new
partners. As such a private UDDI registry is well suited to allowing potentially regularly changing business
partners in an Extended Enterprise to determine how to interoperate with each other. However, different
partners, depending on their role, should see a different set of the available services in an enterprises’
private UDDI registry. This is for security, business confidentiality and simplicity purposes. As such in this
paper we propose how a role-based access control scheme for a private UDDI registry can be utilized to
support the Extended Enterprise.

1 INTRODUCTION

Web Services are designed to provide easier
business-to-business integration among enterprises.
Although a public Universal Description, Discovery
and Integration (UDDI) service registry provides
centralized information storage and retrieval, due to
security concerns more and more organizations
prefer to build their own private UDDI registries in
their corporate network. In contrast to public
registries, private registries are hosted inside a
secure intranet or extranet and are only accessible by
invited business partners via some user
authentication mechanisms.

Such a private UDDI registry provides an
appropriate hub for the infrastructure of an Extended
Enterprise, as it allows dynamic discovery and
lookup of services, supporting the dynamic
partnering changes that are part of the Extended
Enterprise (Goldman, 1994; Whitman et. al., 1999).

Since an enterprise may only want certain
partners in the Extended Enterprise to see certain
services while hiding the other services, access
control inside private registries becomes essential.
As pointed out by Adams and Boeyen (2002),
confidentiality is one of the registry security
requirements as some content in the registry should
only be available to a particular subset of service

requesters. To do this it should be possible to specify
access permissions for every entry inside a UDDI
registry.

An access control-enable UDDI registry needs to
support a number of scenarios so as to be an
appropriate addition to the infrastructure of the
Extended Enterprise. It must be able to support the
case of a new partnering relationship being created,
a partner being removed and modification to a
partnering relationship.

Although XML SOAP gateways produced by
commercial IT vendors these days may be
configured to provide a form of access control for
Web services method invocation at runtime, we
argue that this has disadvantages to access control in
the UDDI registry. SOAP security gateways
normally understand the WSDL (Web Services
Description Language) documents of the web
services and therefore are able to understand the data
within the SOAP requests (Brose). They are able to
verify message senders by checking the XML digital
signatures or security assertions embedded inside
SOAP headers and communicate with the policy
server for access decisions (Brose). A gateway will
then either reject the request or forward the request
to the Web service server for processing based on
the predefined security policies about WSDL service
methods.

176
Steele R. and Dai J. (2005).
UDDI ACCESS CONTROL FOR THE EXTENDED ENTERPRISE.
In Proceedings of the First International Conference on Web Information Systems and Technologies, pages 176-181
DOI: 10.5220/0001232601760181
Copyright c© SciTePress

This feature of SOAP security gateways forbids
unauthorized users to invoke Web services methods
at runtime. However, this checking by the gateway
leads to a performance degradation in service calling.
Furthermore, access control inside the UDDI
registry is still essential to prevent unauthorized
users from reading certain information in the first
place. It is desirable for security, business
confidentiality and interface simplicity purposes to
present to users only the set of services they have
permission to access.

UDDI defines a standard way for businesses to
list their services and discover each other on the
Internet. An entry in the UDDI registry contains
references to the WSDL service interface description
file and the URL of the Web service. Typically
when a user searches the registry for a service, he
will get the service access point and a tModel
linking to the WSDL description file. The user is
then able to interact with the service based on the
access point and the WSDL description file.

Thus access control can be enforced on entries
inside the UDDI registry to allow only authorized
users to access information about a particular service
access point and tModel. For easier maintenance and
configuration, security policies may be defined in
XML and we can use the existing XML-based
access control specifications such as XACML to
exploit XML’s own ability to build access control in
the UDDI.

2 BACKGROUND

Extensive research has already been carried out on
access control to XML documents built upon XML-
based security policies. A number of access control
models (Bertino et. al., 2001; Damiani et. al., 2002a,
Gabillon & Bruno, 2001) were first proposed by
academia to regulate access to XML documents. For
example Gabillon and Bruno have proposed an
XML authorization model for pull-mode access
control. Similarly Damiani et. al. have proposed a
fine-grained access control system for pull-mode
access control. Bertino et. al. from the University of
Milan have proposed a java-based Author-X system
in 2001 for both pull and push mode access.

 These models introduce XML-based access
control to XML documents at both instance and
schema level. They provide a way for security
administrators to define security policies in XML
format. Access control is based on the definition of
subjects, objects and authorization rules. Subjects
are user identifiers such as a login name which may
be used to access the system. Objects can be nodes
inside an XML XPath tree and are referred in XPath

language. Finally there are authorization rules
defining the access permissions for certain subjects
to access certain objects. The syntax of authorization
rules differs slightly from one model to another.
However they all define rules about who can access
what resources under which mode.

These authorization policies support access
control at different levels of granularity, from DTD
(Document Type Definition) schemas to individual
documents to elements within those documents.
Security policies specified at the DTD level will be
applied to all derived XML documents; On the other
hand policies specified on an element inside an
XML document may be defined in a recursive
approach applicable to all its sub-elements or in a
non-recursive approach only applicable to itself
(Damiani et. al., 2002b).

Once receiving the request, these systems check
for every element inside the requested document the
access privileges the user has on the element by
referring directly to the security policies as well as
calculating the implicit rules by propagation options
(Bertino et. al., 2001; Damiani et. al., 2002b). The
system fetches all relevant policies from the policy
base applicable to the element at both the instance
and the DTD levels. The system then applies its
conflict resolution policies to eliminate possible
conflicts. The pruning algorithm recursively
processes each secure policy and marks the
appropriate elements with “+” or “-”. Finally, as
indicated by Bertino, the system presents the
requester with a view of the requested documents by
pruning all unauthorized elements and attributes
from the original documents marked with “-” sign.

If a system has a large number of users, access
control policies may become tedious for security
administrators to manage. On the other hand quite
often access permissions to resources inside an
organization are normally determined by the role a
user plays. As pointed out by Ferraiolo and Kuhn
(1992), this role definition normally involves
“specification of duties, responsibilities and
qualifications”. Hence Role Based Access Control
(RBAC) was first introduced in 1992 by Ferraiolo
and Kuhn. With the Role Based Access Control
model, users will be assigned with security roles.
Security policies will be defined in the form of roles,
objects and permissions. Resources availability is
then determined by the role a user plays in the
interaction. By grouping users into security roles, the
Role Based Access Control model is a lot easier to
maintain.

Some of the above mentioned access control
models support role based access control by offering
ways for security administrators to define users and
user groups. For instance Gabillon and Bruno (2001)
proposed using a separate XML subject sheet (XSS)

UDDI ACCESS CONTROL FOR THE EXTENDED ENTERPRISE

177

to describe users and groups. Users and their
corresponding groups are defined inside XSS files in
a hierarchical structure.

Based on these access control models, OASIS
(2003) proposed the extensible access control
markup language (XACML) specification. XACML
specification defines standard XML-based policy
language and access control/decision language. It is
a non-proprietary language that provides standard
and generic means for policy-based access control.

Logically a typical XACML system comprises a
Policy Enforcement Point (PEP), a Policy Decision
Point (PDP) and a set of policies. As shown in figure
1, typically a request trying to access a resource is
sent to system’s PEP. Based on the requester’s
attributes, the requested object and type of operation,
PEP sends a new request to the PDP. The PDP
examines the request, checks the policies from the
policy repository, makes a denial or grant decision
and sends the decision back to the PEP. PEP then
grants or denies access to the requester. All security
polices are defined and stored in a repository. Policy
Combining Algorithm and Rule Combining
Algorithm are used to build complex policies and
handle conflict resolution (OASIS, 2003).

Figure 1: XACML system overview

To support role based access control, in February
2004, OASIS published the “XACML Profile for
Role Based Access Control (RBAC)” specification,
which defines the profile for use XACML for the
Role Based Access Control. The specification
defines normative profile to build role based access
control in XACML as well as non-normative
illustration of how to construct role based access
control in XAXML (OASIS, 2004). Security roles
can be expressed as attributes in XACML.

3 UDDI ACCESS CONTROL FOR
IMPLEMENTING THE
EXTENDED ENTERPRISE

The Extended Enterprise infrastructure architecture
involves an access control-enabled private UDDI
registry at each organization and a Partner Directory
at each organization. This registry contains entries
for all of the services provided by that enterprise.

UDDI
Private
Registry

UDDI
Private
Registry

UDDI
Private
Registry

Enterprise 1
Enterprise 2

Enterprise 3

2. Look up
registry of
partner 3 and
get list of
accessible
services

1. Add
partner 3 to
directory

3. Call
partner 3
service

Figure 2: Extended Enterprise infrastructure

3.1 Partner Establishment

When an enterprise establishes a new relationship
with another organization, the two organizations first
record the relationship role the other organization
has with it e.g. supplier, customer, sister company
etc. This role is stored by each organization in its
respective Partner Directory (see Figure 2). This
Partner Directory will store the set of roles for each
partner. The roles an organization and its partner
have with each other may typically be
complementary to each other.

The partners will now exchange URLs of their
private UDDI registries, allowing each to now
search and browse for services offered by the other.
Based on the access control mechanism, each

Policy
Set

Policy
Decision

Point

Policy
Enforcement

Point
R

equests

R
esponses

WEBIST 2005 - INTERNET COMPUTING

178

partner only sees a certain set of the available
services, based on their role.

The UDDI access control system will make use
of the local Partner Directory in determining access.
When a request to access the UDDI registry comes
from a partner, the UDDI access control system will
first consult the Partner Directory to determine the
set of role(s) of that partner.

3.2 UDDI Access Control

Below we outline the Role Based Access Control
Model that we propose to use for the Extended
Enterprise infrastructure. More detail can be found
in (Dai, Steele, 2005). This access control model is
implemented with XACML, as XACML is a non-
proprietary language that provides standard and
generic means for policy-based access control and
supports role-based access control. A typical role
based access control model contains five basic
elements: users, roles, objects, operations and
permissions (OASIS, 2004). In our access control
model, the objects to be protected are entries in a
UDDI registry. The model will enable security
administrators to define users, security roles and
security policies all in XACML format.

Suppose suppliers are to have access to service
getSupplierQuote. While suppliers may have access
to the getSupplierQuote service, competitors should
not. In this scenario the access control model can
capture this functionality.

Below we give the example of how this can be
encoded based on Oasis XACML Profile for Role
Based Access Control specification (OASIS, 2004).
A security policy may be first defined as shown in
Figure 3 about granting access to service
getSupplierQuote. The policy Id (PolicyId) in this
case is permissions:for:supplier:role. This policy
will be hooked to security role supplier by
referencing the policy Id in the supplier role
definition as shown in Figure 4. Hence Figure 3 and
Figure 4 together define that security role supplier
has the permission to access service
getSupplierQuote. XACML also allows the
associating of a user or enterprise with various roles.
For example Enterprise 1 can be associated with the
role, supplier. When Enterprise 1 enters the system,
the XACML engine will be able to assign the
privileges of the supplier role to Enterprise 1.

The proposed access control model will do the
following after an enterprise authenticates with the
private UDDI registry:

<Policy PolicyId=
"Permissions:for:supplier:role"
RuleCombiningAlgId=
"urn:oasis:names:tc:xacml:1.0:
rule-combining-algorithm:first-
applicable”>
<Target>
 <Subjects>
 <AnySubject/>
 </Subjects>
 <Resources>
 </AnyResource>
 </Resources>
 <Actions>
 <AnyAction/>
 </Actions>
</Target>
<Rule RuleId=”SupplierPolicies”
Effect=”Permit”>
 <Target>
 <Subjects>
 <AnySubject/>
 </Subjects>
 <Resources>

<Resource>
 <ResourceMatch MatchId=
 ”&function;string-match”>
 <AttributeValue DataType=
 ”&xml;string”>
 getSupplierQuote
 </AttributeValue>
<ResourceAttributeDesignator
 DataType="&xml;string"
 AttributeId=
 "getQuoteSupplier"/>
</ResourceMatch>

 </Resource>
 </Resources>
 <Actions>
 <Action>
 <ActionMatch MatchId=
 “&function;string-match”>
 <AttributeValue DataType=
 “&xml;string”>access
 </AttributeValue>
 </Action>
 </Actions>
 </Target>
 </Rule>
</Policy>

Figure 3: Policy for getSupplierQuote

1. Role assignment
The system will read role definitions declared in
XACML to find authorized roles for the enterprise.
Once found, it will assign the security role to the
enterprise
 2. Policy collection
The system will look at the policy set associated
with that role. By checking every policy ID declared
inside the policy set, the system will locate all
policies the role is granted to access. Different
policies assigned to a single role can lead to conflicts.

UDDI ACCESS CONTROL FOR THE EXTENDED ENTERPRISE

179

Conflict resolution will occur as per XACML
conflict resolution. This information can then be
used in building the partial views of UDDI search
results or browse results subsequently.

…

<PolicySet
PolicySetId="supplier:role">

 <Target>

 <Subjects>

 <Subject>

 <SubjectMatch MatchId=

 ”&function;string-equal”>

 <AttributeValue

 DataType=”&xml;string”>

 supplier

 </AttributeValue>

 <SubjectAttributeDesignator

 DataType="&xml;string"

 AttributeId="supplierrole"/
>

 </SubjectMatch>

 </subject>

 </Subjects>

 <Resources>

 </AnyResource>

 </Resources>

 <Actions>

 <AnyAction/>

 </Actions>

 </Target>

 <PolicySetIdReference>

 Permissions:for:supplier:role

 </PolicySetIdReference>

</PolicySet>

…

Figure 4: Define the supplier role

The UDDI access control implementation will
work by maintaining two cached lists for each
authenticated user: one for determined accessible
services and one for determined inaccessible
services (Dai, Steele, 2005). These lists will survive
for the lifetime of the enterprises’ partnership and it
is assumed that the access control policies do not
change during this time. The system proposal can be
easily adjusted so as check for policy changes during
the lifetime of the partnership.

3.3 Partner Removal

When a partner relationship of some form between
two enterprises terminates, that role for a partner
organization will now be removed from the Partner

Directory. This means that new requests to search or
browse the UDDI registry will not be granted.

However, the security problem remains that the
services already known of by the partner will still be
known of and callable. One approach to overcome
this is to generate for any given service, unique
endpoints (URLs) per partner enterprise. These
unique URLs would be generated when the new
partnership is formed and requests to the private
UDDI registry are made. For example, these unique
URLs might contain the service name with a random
string of digits appended.

When a partner enterprise ceases to be a partner,
these URLs will cease to function as endpoints (will
not be recognized by the SOAP engine). As such,
future requests will not be responded to. The
enterprise that was previously a partner will still
know the service names but will no longer be able to
access the services.

The approach of having UDDI-based access
control as opposed to having a SOAP gateway check
every incoming SOAP message for access
permissions, has performance advantages. There will
not need to be an access permission check on every
incoming SOAP message, but rather permission
evaluation is done just once, at UDDI lookup time.

3.4 Relationship Modification

A third case exists of partner relationship
modification – that is, a change of Role. This case is
treated like partner removal followed by a partner
establishment but under a new Role. More efficient
approaches are possible, where common services are
maintained and only differing services added or
disabled, but such approaches are not considered
further here.

4 FUTURE WORK

Future work of interest includes extending the UDDI
access control to be more fine-grained: that is
providing access control on a per-method basis. The
current system allows access or denies access to a
whole service, which is described with a single
WSDL file and which typically might have a
number of methods. However, cases will occur
where a user should have access to some of a
service’s methods and not others. In this case, one
option is for a UDDI lookup to potentially “pruned”
WSDL files – service description files showing only
accessible methods and omitting others.

In this paper we have concentrated on access
control for UDDI lookup activities. UDDI also has
an API for publishing. That is, a set of services for

WEBIST 2005 - INTERNET COMPUTING

180

uploading or deleting services from the UDDI
registry. This aspect of UDDI functionality also
requires access control. For example, partner
organizations of sufficient closeness may be able to
publish new services or have permission to publish
in only certain UDDI categories. Other organizations
should not have write permissions to the private
UDDI registry.

5 CONCLUSION

Businesses today are facing the increasing need for
business collaboration among different partners
through time. Web services provide a solution for
easier B2B interaction and private UDDI registries
inside corporate networks are used for efficient
interaction between business partners. However
since an organization may only want the right
business partners to see only the right service
information they are entitled to, some kind of access
control mechanisms inside the private registry are
required. In this paper we described how access
control-enabled private UDDI registries can be used
to provide an appropriate infrastructure for the
Extended Enterprise. This approach to providing
access control for Web services has some
advantages over approaches based on SOAP
gateways.

REFERENCES

Adams, C. & Boeyen, S., 2002. UDDI and WSDL
Extensions for Web Services: A Security Framework,
Proceedings of the ACM workshop on XML security,
Session 2, p. 30-35.

Dai, J., Steele, R., 2005. UDDI Access Control. In
Proceedings of the 2005 International Conference on
Information Technology and Applications, Sydney,
Australia.

Bertino, E., Castano, S. & Ferrari, E., 2001. Securing
XML Documents with Author-X, IEEE Internet
Computing, Vol. 5, Iss. 3, pg. 21-31

Brose, G. Securing Web Services with SOAP Security
Proxies [Online], Available:

http://www.xtradyne.com/documents/whitepapers/Xtradyn
e-WebServices_Security_Proxies.pdf (Accessed
September 2004).

Damiani, E., Vimercati, S., Paraboschi, S. & Samarati, P.,
2002. A Fine-Grained Access Control System for
XML Documents, ACM Transactions on Information
and System Security, Vol. 5, No. 2, pg. 169-202

Damiani, E., Vimercati, S., & Samarati, P., 2002. Towards
Securing XML Web Services. Proceedings of the

2002 ACM workshop on XML security, Session 4, p.
90-96

Extensible Access Control Markup Language Version 1.0
[Online], 2003, Available: http://www.oasis-
open.org/committees/download.php/2406/oasis-
xacml-1.0.pdf

Ferraiolo, D. & Kuhn, R., 1992. Role-Based Access
Control. Proceedings of 15th National Computer
Security Conference, pg 554-563

Gabillon, A. & Bruno, E., 2001. Regulating Access to
XML Documents. Proceedings of the fifteenth annual
working conference on Database and application
security, pg. 299-314

Goldman, S.L., 1994. Co-operating to Compete: From
Alliances to Virtual Companies, in CMA. p. 13-17.

Oasis, 2003. A Brief Introduction to XACML [Online],
Available: http://www.oasis-
open.org/committees/download.php/2713/Brief_Introd
uction_to_XACML.html (Accessed September 2004)

Oasis, 2004. XACML Profile for Role Based Access
Control [Online], 2004, Available: http://docs.oasis-
open.org/xacml/cd-xacml-rbac-profile-01.pdf

Whitman, L., Krishnan, K., Agarwal, R., Bhandare, P.,
1999. Engineering the Extended Enterprise.
Proceedings of the 4th Annual International
Conference on Industrial Engineering Theory,
Applications and Practice, Nov 17-19, 1999, San
Antonio, Texas, USA.

UDDI ACCESS CONTROL FOR THE EXTENDED ENTERPRISE

181

