
DYNAMIC AND DECENTRALIZED
SERVICE COMPOSITION

With Contextual Aspect-Sensitive Services

Thomas Cottenier, Tzilla Elrad
Computer Science Department, Illinois Institute of Technology, 3300 S. Federal Street, Chicago, USA

Keywords: Web Services and Web Engineering, Service Composition, Context-Sensitive Customization.

Abstract: This paper introduces a new technique to dynamically compose Web Services in a decentralized manner.
Many of the shortcomings of current Web Service composition mechanisms stem from the difficulty of
defining, modularizing and managing non-functional concerns and context-sensitive behaviours. Contextual
Aspect-Sensitive Services (CASS) is a distributed aspect platform that targets the encapsulation of
coordination, activity lifecycle and context propagation concerns in service-oriented environments. CASS
enables crosscutting and context-sensitive concerns to be factored out of the service implementations and
modularized into separate units of encapsulation. CASS does not require a centralized orchestration engine
to coordinate the message exchanges. Coordination logic is woven directly at the level of the message
processing engine. The CASS composition definition language offers a powerful alternative to static and
centralized business process definition languages such as BPEL4WS.

1 INTRODUCTION

Service-oriented, peer-to-peer and pervasive
computing environments are pining for dynamic
composition mechanisms.

In service-oriented environments, distributed
components are discovered and integrated at
runtime. Consequently, they can hardly anticipate
the functionality requirements of all their client
applications. There is therefore a need for methods
to customize service components based on context
specific requirements.

Service composition is a way to generate custom
behaviour. Nevertheless, current composition
mechanisms, such as orchestration languages tend to
produce highly specialized compositions that are
particular to a specific situation. They do not
accommodate changing requirements very well and
target long term collaborations. Some service
collaborations only make sense in a particular
context, and have a short life cycle. Hence, there is a
need for mechanisms that support the dynamic
deployment and refinement of service compositions.
Therefore, non-functional concerns and context-
sensitive behaviours imperatively need to be
factored out of the core logic of collaborations.
Those concerns tend to be hard to modularize into

regular components, and are therefore good
candidates for aspect-oriented modularization.

The Contextual Aspect Sensitive Service
(CASS) platform is a distributed aspect platform that
targets the encapsulation of coordination, activity
lifecycle and context propagation concerns in
service-oriented environments.

1.1 Service-Oriented Architecture

Service-Oriented Architecture (SOA) is an
architectural style whose goal is to achieve loose
coupling among interacting software entities, in
order to facilitate the integration of software
components into distributed applications. Loose
coupling is obtained by limiting the complexity of
the service interfaces, which should only encode
generic semantics. Therefore, all application-specific
semantics have to be encoded in descriptive
messages. Second, in order to ensure
interoperability, the messages have to be written in
an open standard format that is understood by all
parties, generally XML. Moreover, the message
structure should be extensible to guarantee
evolvability. Finally, an SOA must provide a
discovery mechanism that enables services to be
discovered, bound and interactively accessed.

56
Cottenier T. and Elrad T. (2005).
DYNAMIC AND DECENTRALIZED SERVICE COMPOSITION - With Contextual Aspect-Sensitive Services.
In Proceedings of the First International Conference on Web Information Systems and Technologies, pages 56-63
DOI: 10.5220/0001232000560063
Copyright c© SciTePress

1.2 Web Services

Web Services is a collection of SOA implementation
technologies based on open standards and interfaces,
including XML, SOAP, WSDL and UDDI (Walsh,
A., 2002). It is generally accepted that Web Services
are an SOA implementation that exchange XML
messages over an internet based transport protocol
such as HTTP.

SOAP is a lightweight XML-based information
exchange protocol for Web Services. A SOAP
message envelope describes what is in a message
and how to process it. The SOAP encoding defines a
set of rules for mapping programmatic types to
XML. WSDL is an XML-based language for
defining Web Services interfaces that describe them
and specify how to access them. UDDI is an XML-
based protocol for registering Web service
descriptions, discover and retrieve them.

A service provides a handle as an URI. A service
implementation is composed of one or more
operation providers. The interfaces of those
providers are called port types and are defined in the
service WSDL. A port type defines a set of
operations that are supported by the operation
provider, as well as the structure and types of the
input and output messages that are supported by
these operations.

2 SERVICE COMPOSITION

Web services aim at being building blocks for
applications. A business process is composed from
multiple component services given a process
definition. Service composition mechanisms need to
maintain state across components and manage
activity contexts, exceptions, and transactional
integrity.

2.1 Orchestration and Choreography

Service composition can be seen from two main
viewpoints: orchestration and choreography. The
choreography viewpoint covers the perspective of a
collaboration between several services that realizes a
value chain. It describes the interactions between
service providers. The orchestration viewpoint
describes the behaviour that a service provider
performs internally within a collaboration.

Choreography languages are not mature yet.
Only the orchestration perspective has been widely
adopted in the industry, through the adoption of the
Business Process Execution Language for Web
Services specification (BPEL4WS, 2003). There is a

therefore a tendency to equate web service
composition with service orchestration although
languages such as BPEL only provide a client-
centric perspective of service composition. BPEL is
not suited for expressing any kind of choreography.

Furthermore, some service collaborations only
make sense in a particular context, and have a short
life cycle. There is therefore a need for mechanisms
that support dynamic deployment and refinement of
short term collaboration. Orchestration languages
only target static web service collaborations.

Finally, the hierarchical modularization of the
composition definition does not allow the
encapsulation of some aspects of the orchestration
such as exception handling or authentication (Charfi,
A, 2004), business rules (Verheecke, B, 2004) or
activity management.

For instance, consider how activities are
implemented. The activity concept provides a way to
scope arbitrary units of distributed work. Fig. 1
illustrates an activity that involves 4 web services.
The work of the participants in the activity is
correlated by propagating some context information
that is maintained by a context service. An activity
life-cycle service further enhances the context
information and informs the participants about the
lifetime of the activity. Neither the choreography nor
the orchestration perspective cleanly modularizes
context propagation and lifecycle concerns. Context
propagation and activity lifecycle code is scattered
and tangled with the core functionality of the
activity.

Tangled code is hard to understand, impede code
reusability and may leave a negative impact on
adaptability, system performance, and reliability.

Choreography Viewpoint

Orchestration Viewpoint

Figure 1: Current choreography and orchestration
definition languages do not support the modularization of
context-propagation and activity lifecycle concerns.
Context propagation and activity lifecycle code is
scattered and tangled with the core functionality of the
activity.

Activity Lifecycle
Service

Activity

Context Service

DYNAMIC AND DECENTRALIZED SERVICE COMPOSITION: With Contextual Aspect-Sensitive Services

57

2.2 Aspect-Oriented Service
Composition

This paper proposes an aspect-oriented service
composition approach based on collaboration-based
design. Aspect-Oriented Software Development
(AOSD) (Kiczales, G, 1997) is an extension to other
software development paradigms that allows
capturing and modularizing concerns that crosscut a
software system into modules called aspects.
Aspect-Oriented Programming (AOP) makes very
powerful program transformations possible, through
a composition process where pieces of code called
advices are woven into the core program at locations
called pointcuts. A joinpoint is an instance of an
event intercepted by a pointcut expression. Members
and methods can also be inserted in classes through
an aspect construct called inter-type declaration.

Aspects have the ability to introduce
functionality in a core program in a non-invasive
way, making it possible to alter the behavior of a
system a posteriori. Aspect weaving can be done
either at compile time, load time, or even at runtime.

The CASS service refinement approach builds
on top of Collaboration-Based Design (VanHilst,
M., 1996, Smaragdakis, Y, 2002) techniques applied
to the development of distributed systems. Aside
class, component or service-based decomposition,
collaboration-based design advocates decomposing
applications into a set of collaboration layers.

Figure 2: Decomposition of an activity into collaboration
layers. Context-propagation and life-cycle concerns are
encapsulated in distinct collaboration layers. Both the
orchestration and the choreography perspectives of a
collaboration layer are modular.

A collaboration layer defines how each actor
contributes to a given task or feature. It captures the
protocols services should implement to fulfill an
interaction. A role specifies the responsibilities the
core service should take up in order to take part in
the interaction. If the collaborations are fairly
independent, systems can be built incrementally by
composing independently defined collaborations
layers.

CASS factors out the various concerns that arise
when services are combined into distinct
collaboration layers. A distributed pointcut language
is used to recompose them non-invasively. The
CASS aspect constructs are powerful enough to
define service choreographies. CASS supports a set
of pointcut and advice composition operators that
allows the control flow and the data flow of a
business process to be defined in a concise way.

3 CONTEXTUAL ASPECT-
SENSITIVE SERVICES

3.1 Requirements

CASS targets the following requirements:
a. Encapsulation of context-sensitive collective

behavior. The most variable elements are not the
services themselves, but their interactions. There
is a need for reusable units of encapsulation that
have the ability to capture complex interactions
that cut across services and heterogeneous
containers.

b. Non-invasive refinement. The refinement of a
client/server relationship needs to be non-
invasive. It cannot require changes to the
implementation of the client or service entities.

c. Concurrent customization. The same service
instance might need to simultaneously offer
customized services to other entities, adapted to
their profile and their context.

d. Loose-coupling. CASS collaboration layers may
not break the loose coupling requirements of
service-oriented architectures and need to
accommodate platform heterogeneity.

3.2 CASS Platform

CASS intercepts SOAP messages at the boundaries
of service components, both at the client and the
service side. CASS includes native mechanisms to
transform, compose, synchronize and multicast the
intercepted messages.

Context Service

Activity

Activity Lifecycle
Service

Context
Propagation

Business
logic

Activity
Lifecycle

WEBIST 2005 - INTERNET COMPUTING

58

The interception subsystem is composed of 6

distinct components: an interceptor component, an
activity component, a dispatcher component, a
composition component and an adaptation
component. CASS also includes an asynchronous
messaging subsystem. Fig.3. illustrates how those
components interact, for messages that flow from
their interceptors to a remote service method.

The interceptor component is responsible for
filtering the messages that flow in and out the
container. If the message matches a pointcut
expression, it is intercepted and its processing is
interrupted.

The activity component attributes an interaction
context to the intercepted message. This context
information is used to delimitate activities. Messages
that share a common context are part of the same
activity.

The dispatcher component is responsible for
forwarding the intercepted messages to remote
service method. The message can be sent to multiple
services in parallel.

The synchronization component can delay the
processing of an intercepted message until the
occurrence of another event in the life-cycle of the
activity in which the message interaction takes part.
The synchronization component buffers the
intercepted messages and coordinates the message
flow within an activity.

The adaptation component can transform both
the structure and the content of the intercepted
messages, before they are dispatched to the service
method.

The communication mechanism used to forward
the intercepted message to a remote service method
is independent of the type of interface exposed by

the method. The messaging component can
transparently

the method. The messaging component can
transparently replace an RPC-based interaction by a
pair of asynchronous request/response messages.
The communication mechanism used is specified at
the level of the pointcut definition. When the
messaging mechanism is used, the routing
component is responsible for directing the service
response back to the joinpoint.

The CASS components interpret declarative
specifications. A rich set of composition and
synchronization operators enable the control flow
and the data flow of choreographies to be specified
in a concise way.

4 MESSAGE INTERCEPTION AND
COMPOSITION

4.1 AXIS

Apache eXtensible Interaction System (Axis) is an
implementation of the Simple Object Access
Protocol (SOAP). The Axis engine processes
incoming and outgoing messages by invoking a
chain of handlers that manipulate an object called
message context. The message context object is a
structure that contains a request message, a response
message and a set of properties. Global message
handlers perform some SOAP specific processing
such as serialization, message dispatching or
routing. Service-specific message handlers perform
tasks that enforce the non-functional properties of
the messages that flow through the container such as
authentication, encryption or session and persistency
management.

Service Bus

Pointcut

Dispatch

Activity

Messaging

 Synchro

 Adaptation

 Messaging

 Routing

CASS Interception Subsystem

CASS Joinpoint Provider CASS Advice Provider

XSLT

Figure 3: Message interception components

DYNAMIC AND DECENTRALIZED SERVICE COMPOSITION: With Contextual Aspect-Sensitive Services

59

4.2 Message Interception

CASS uses an aspect-oriented programming
language to intercept the message context at
different points of the handler chain. When a
message matches a regular expression defined in a
pointcut expression, message processing is
interrupted, and the CASS interception subsystem
takes control over the message.

An interceptor can be credited some additional
properties that depend on the message handler it acts
upon. Fig 4 shows how different qualities of
interceptors are specified using aspect pointcut
expressions that act up different message handlers.

Quality enforcement rules specify constraints on
the interceptors that guarantee essential invariants of
the system are not violated. For example, a quality
rule might require that an interceptor that catches a
decrypted message exhibits appropriate security
credentials.

CASS service-oriented pointcut expressions
specify a set of message interceptors that operate
within a collaboration layer. The CASS pointcut
interpreter translates a declarative pointcut
expression that is defined with respect of WSDL
definitions into a lower level aspect pointcut
expression that acts upon the message handlers.

The code sample of Fig 5 defines a pointcut on
calls to operations of the “MathPortType” of the
“MathService” on the IIT application server.

<pointcut name = "MathPointcut"

 type = "client"

 service = "*/MathService"

 operation = "* AND !multiply"

 host = "http://www.iit.edu:8081“/>

Figure 5: CASS client-side pointcut expression

4.3 Message Dispatching

When a message matches a pointcut expression, the
execution of the message handler on which the
pointcut acts is interrupted and the message context
being processed is intercepted.

The dispatching component can perform 3
different actions on the message context:
a. Before forwarding. The intercepted message

context is forwarded to a remote service method
before it is processed by the message handler.
The remote method can modify the input
message of the message context. The interrupted
handler always resumes.

b. After forwarding. The intercepted message
context is forwarded to a remote service method
after the message handler returns control – after
the interrupted service method has been
executed. The remote method can modify the
output message of the message context.

c. Around execution. A remote service method is
executed instead of the message handler. Both
the input and the output messages can be
modified by the remote service method. The
remote method can resume the execution of the
interrupted handler, by invoking a special
method, ‘proceed’. The ‘proceed’ method has the
same signature as the remote method itself. If the
‘proceed’ method is not called within the remote
service method, the initial service call or
execution is not executed at all.

The action to be performed on an intercepted
message is specified in an advice definition. The
advice definition defines the type of action and the
host, service and operation to which the intercepted
message must be dispatched. Advice definition can
be composed and bound to multiple pointcut
expressions.

execution(* AxisChain.invoke(MessageContext))

execution(* HTTPSender.invoke(..))

execution(* SecurityPolicyHandler.invoke(MessageContext)) ‘wild’ execution pointcut
secure execution pointcut

‘wild’ call pointcut

Service
Thread

HTTP
Sender

SOAP
Deserializer

SOAP

Serializer

Security
Policy

Handler

Response
Credential
Handler

Persistent
Service
Handler

Routing
Response
Handler

…

…

 Container

Service
Provider

Axis Chain

Figure 4: Message Context interceptors – CASS pointcut expressions are translated into lower level pointcut expressions
that act upon the message handlers. Depending on the handler that is intercepted, CASS pointcuts can be attributed
quality properties.

WEBIST 2005 - INTERNET COMPUTING

60

 <pointcut name= "redir" type= "client"

 service= "MathService"

 operation= "add"

 host= "http://www.iit.edu:8081"/>

 <advice type= "around" bind-to= "redir"

 service= "MathService"

 operation= "add“

 host="http://ws-concerns.com:8081"/>

Figure 6: Redirection aspect

The code sample of Fig 6 illustrates a simple
redirection aspect. A call to ‘MathService’ on the
IIT server is replaced by a call to the same service
on an alternate server. Such aspects can be used to
implement load-balancing and fault tolerance
algorithms.

4.4 Message Adaptation

The intercepted messages may very well not match
the remote service method interface. The adaptation
component can transform both the structure and the
content of the intercepted messages, before they are
dispatched to the remote service method. The
adaptation component uses XSLT to generate a new
SOAP message that conforms to the interface of the
new method interface. The XSL templates used for
the transformation are part of the CASS composition
specification. The adaptation component makes it
possible for remote service methods to process a
wide range of intercepted messages.

4.5 Context Propagation

A context uniquely defines the scope of an activity.
Contexts are transparently propagated along
interactions of a same activity. Contexts are
declared at the pointcut level. Each time an event
triggers a contextual pointcut, the intercepted
message is wrapped into a CASS envelope that
includes a context description. The context
description carries the following information:
a. Context name. The context name is the name of

the pointcut that defines the context
b. Context id. A different id is attributed to each

joinpoint instance.
c. Joinpoint callback. The URI of the callback

interface of the joinpoint that created the
context instance.

d. Context service data. Context data associated to
the activity. The context data can also be
maintained as service data associated to a
service. In the later case, only a URI to the
service data is propagated.

The context id discriminates different activity
instances. Pointcuts can therefore be defined on a
per-activity basis. Contextual pointcuts enable
concurrent service customization.

4.6 Control Flow Constructs

The CASS specification can be used to define
service choreographies. Calls and executions of
remote service methods can themselves be
intercepted, and bound to other service methods.
CASS introduces a set of pointcut and advice
composition operators that allow business processes
to be defined.

4.6.1 Advice Chain

A sequence of advice methods can be bound to a
pointcut. The code sample of Fig 7 shows how a
chain of advices is specified. The sequence defines a
stack of methods to be executed around the
‘MathPointcut’. The advice methods are deployed
on different hosts. Fig 8 illustrates the message flow
of the advice chain.

First, the intercepted message is forwarded to the
filter1 operation of the advice1 service. The request
message is XSLT transformed, so it matches the
signature of the filter1 operation. Advice1 processes
the request message, and calls its ‘proceed’ method.
The message is mapped and forwarded to the next
method on the advice stack, filter2. filter2 further
processes the request message and calls ‘proceed’.
When no more method is left on the advice stack,
control is returned to the joinpoint. The request
message is mapped back from filter2 to filter1, then
from filter1 to the operation interrupted by the
pointcut. The interrupted operation proceeds and
operates on the mapped request message returned by
filter2. Once it completes, the response message is
returned back to the last method on the advice stack
– in this case, filter2. filter2 processes the response
message, returns it to filter1, which returns control
to the joinpoint.

The interaction between the joinpoint and the
advice methods is really peer-to-peer. There is no
center of coordination that controls the message
flow. Such collaboration can not be specified using
an orchestration language as BPEL.

4.6.2 Concurrency and Synchronization

Several advice methods bound to the same
interceptor can be executed concurrently, by
composing them with the ‘flow’ operator. Flow
composition has multicast semantics.

DYNAMIC AND DECENTRALIZED SERVICE COMPOSITION: With Contextual Aspect-Sensitive Services

61

<sequence bind-to="MathPointcut">

 <advice type="around"

 service="MathAdvice1" operation="filter1"

 host="http://www.iit.edu:8080">

 <request>

 <xsl:template – message mapping from pointcut

 request to advice 1 request/>

 <xsl:template - message mapping from advice 1

 request to pointcut request/>

 </request>

 <response>

 <xsl:template - message mapping from pointcut

 response to advice 1 response/>

 <xsl:template - message mapping from advice 1

 response to pointcut response/>

 </response>

 </advice>

 <advice type="around"

 service="MathAdvice2" operation="filter2"

 host="http://ws-concerns:8080">

 <request>

 <xsl:template - message mapping from advice 1

 request to advice 2 request/>

 <xsl:template - message mapping from advice 2

 request to advice 1 request/>

 </request>

 <response>

 <xsl:template - message mapping from advice 2

 response to advice 1 response/>

 <xsl:template - message mapping from advice 1

 response to advice 2 response/>

 </response>

 </advice></sequence>

Figure 7: Advice sequence. 2 ‘around’ advices are
sequentially bound to a single pointcut expression. XSL

templates adapt the request and response messages so they
match the interface of the service they are redirected to.

Control can be returned to the joinpoint in 2
ways. In the first case, control is returned when the
joinpoint callback listener receives its first response
message. The other responses are ignored. This
construct is handy for querying semantically
equivalent services concurrently, or when no reply is
expected from the advice methods.

In the second case, the joinpoint synchronizes
the responses. All the response messages are
buffered and control is only returned to the joinpoint
when all calls have returned. The buffered messages
are then processed by the XSLT-based adapter,
which aggregates the results. Powerful operations on
the content of response messages can be specified at
this level. For example, the XSLT mathematical
functions make it possible to compute the sum, the
product or the minimum value of response messages
variables.

Pointcuts can also be correlated by composing
them with the ‘join’ operator. ‘join’ synchronizes
interceptors acting on different services. Processing
is interrupted until all the composed pointcuts have
been triggered. All the intercepted messages are
forwarded to the advice method where they are
buffered. Once all the pointcuts have been triggered,
the XSLT adapter aggregates the messages into one
request that is processed by the advice.

The combination of the ‘flow’ advice
composition operator and the ‘join’ pointcut
composition operator provide an elegant way to
implement Petri-Net style flows, such as fork/join
operations on different hosts. BPEL does not support
this kind of compositions.

proceed

 S1 A1 A2

S1 request -> A1 request
A1 request -> A2 request

A1 request -> S1 request A2 request -> A1 request

S1 response -> A1 response A1 response -> A2 response

A2 response -> A1 response
A1 response -> S1 response

proceed

S1 SOAP
Request

S1 SOAP
Response

XSLT

Figure 8: Sequence diagram for a chain of 2 ‘around’ advices. Mappings need to be specified in both direction, in case
the ‘proceed’ method is called by the advice methods. The interaction between S1, A1 and A2 is truly peer-to-peer.

There is no center of coordination in this interaction

WEBIST 2005 - INTERNET COMPUTING

62

5 DYNAMIC DEPLOYMENT

The CASS platform includes a dynamic aspect
deployment service. A client parses the
choreography specification, and partitions it into
pointcut and advice definitions that are relevant to
each participant host and service. The deployment
service translates those descriptors into low-level
pointcut expressions that act upon the message
handlers.

All pointcuts are associated to an activity
context. Pointcuts are only triggered for messages
that match the pointcut expression, and whose
context descriptor corresponds to the pointcut
activity. The activity context guarantees consistent
deployment of choreographies. The pointcut that
defines the entry point of the activity – the context –
is only activated after successful deployment of the
choreography. This ensures that the messages being
processed at deployment time are not affected until
all interceptors, advice handlers and adapters are
deployed and activated.

The CASS choreography definition is an
intermediate representation. It is typically generated
from higher level definitions and automatically
validated. CASS Interaction patterns are encoded
into XSLT files, where all service specific
information is factored out, and represented by XSL
variables. A graphical tool can then used to map the
interaction patterns to concrete service topologies.

6 CONCLUSION

This paper introduces a new technique to
dynamically compose Web Services in a
decentralized manner. Contextual Aspect-Sensitive
Services (CASS) enables crosscutting and context
dependent behaviour to be factored out of the
service implementations and modularized into
separate units of encapsulation that are exposed as
Web Services.

CASS introduces a service-oriented pointcut
model and composition operators. The CASS
platform implements a context propagation
mechanism that transparently maintains activity
context across service collaborations in a distributed
setting. The context information is used to define
sophisticated pointcuts that enable concurrent
service customization.

CASS can be used to dynamically deploy
services choreographies. It has the potential to
define more advanced collaboration scenarios than
can be specified with state-of-the-art web service
orchestration languages such as BPEL4WS.

ACKNOWLEDGEMENT

This work is partially supported by CISE NSF grant
No. 0137743.

REFERENCES

Walsh, A., 2002. UDDI, SOAP, and WSDL: The Web
Services Specification Reference Book, Prentice Hall.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C. V., Loingtier, J.-M., Irwin, J., 1997. Aspect-
oriented programming. In Proceedings of the
European Conference on Object-Oriented
Programming. Springer-Verlag.

Filman, R., Friedman, D., 2000. Aspect-oriented
Programming is Quantification and Obliviousness. In
Workshop on Advanced Separation of Concerns,
OOPSLA 2000.

VanHilst, M., Notkin, D., 1996. Using Role Components
to Implement Collaboration-Based Designs. In
Proceedings of the 11th ACM conference on Object-
Oriented Programming, Systems, Languages, and
Applications.

Smaragdakis, Y., Batory , D., 2002. Mixin Layers: An
Object-Oriented Implementation Technique for
Refinements and Collaboration-Based Designs. ACM
Transactions on Software Engineering and
Methodologies

Chafle, G., Chandra, S., Mann, V., Nanda, M. G., 2004.
Decentralized Orchestration of Composite Web
Services. In Proceedings of the Thirteenth
International World Wide Web Conference.

Charfi, A., Mezini M., 2004. Aspect-Oriented Web
Service Composition with AO4BPEL. In Proceedings
of European Conference on Web Services.

Verheecke, B., Cibrán, M. A., Jonckers, V. 2004., Aspect-
Oriented Programming for Dynamic Web Service
Monitoring and Selection, In Proceedings of the
European Conference on Web Services.

Suvee , D. Vanderperren, W., Jonckers, V., 2003. JAsCo:
an aspect-oriented approach tailored for component
based software development. In Proceedings of the 2nd
International Conference on Aspect-Oriented Software
Development.

Cottenier, T., Elrad, T., 2004. Validation of Aspect-
Oriented Adaptations to Components. Ninth
Internationapl Workshop on Component-Oriented
Programming as part of ECOOP’04

BPEL4WS, 2003. Business Process Execution Language
for Web Services Specification (BPEL4WS)
http://www-128.ibm.com/developerworks/library/ws-
bpel

Axis, 2000. Apache http://ws.apache.org/axis

DYNAMIC AND DECENTRALIZED SERVICE COMPOSITION: With Contextual Aspect-Sensitive Services

63

