
SEAMLESS AND SECURE AUTHENTICATION FOR GRID
PORTALS

Jean-Claude Côte, Mohamed Ahmed, Gabriel Mateescu, Roger Impey
National Research Council, 1200 Montreal Rd, M50, HPC, Ottawa ON, K1A 0R6 Canada

Darcy Quesnel
Canarie Inc., 110 O’Connor St., Ottawa, ON, K1P 5M9 Canada

Keywords: grid portal, security, web services, single sign-on, digital certificates, secure shell

Abstract: Grid portals typically store user grid credentials in a credential repository. Credential repositories allow
users to access Grid portals from any machine having a Web browser, but their usage requires several
authentication steps. Current portals require users to explicitly go through these steps, thereby hindering
their usability. In this paper we present intuitive and easy to use tools to manage certificates. We also
describe the integration of Grid Security Infrastructure authentication into a Java-based SSH terminal tool.
Based on these tools, we build an innovative portal authentication mechanism that enables transparent
delegation of credentials between clients, grid portal and the credential repository.

1 INTRODUCTION

Grid computing (Foster, 1997] supports sharing of
distributed resources across authorization domains.
A portal to such a grid allows scientists to securely
and easily access grid resources at various locations
by using a web browser. For example, users can
execute an application, download or upload data and
monitor the status of a computing job (Grimshaw,
1997] through a browser. In addition to user
mobility, browser-based access provides an easy-to
use interface to the grid. Some available grid portal
frameworks are GridPort (GridPort], GridSphere
(GridSphere] and Unicore (UNICORE]. In this
paper, we discuss ways to extend and enhance Grid
portals by using client side Java applications (Joy,
2000] that facilitate credential management. These
mechanisms were developed in the context of a Grid
Infrastructure project in National Research Council
Canada.

Typically, grid portals do not run on the client’s
system. For example, in a Globus Toolkit grid
infrastructure based on C-language components,
users have to rely on Unix-like platforms to generate
certificate requests and do certificate housekeeping
by way of command-line tools. The Globus
Commodity Grid (CoG) CoG kit (COG] provides
Java version of most command-line tools, thereby

enabling credential management on all Java
platforms. However, the (CoG) kit needs to be
downloaded and deployed by the user. It is also
missing some functionality present in the command-
line tools and does not provide a graphical user
interface, as a grid portal user would expect. In this
paper we will discuss the design and implementation
of some of the missing tools and the deployment of
the Java applications using Java Plugin and Web
Start technologies. Henceforth, we call the tools that
we contribute the Credential Management Tools.
Another contribution described here deals with
providing a way for grid portal users to open a shell
at runtime to a grid resource, which is sometimes
required for debugging/inspection of processes on
remote resources but is not typically supported by
grid portals.

The work presented in this paper is related to the
Grid Canada project. The paper is organized as
follows. In section 2, we present the architecture of
an open-source grid portal with improved
authentication and interactive execution services. In
Section 3, we describe the certificate management
tools, followed by the description of the GSI-based
SSH java client in Section 4. Section 5 explains the
components and usage scenario of our grid logon
client applet and web service. Section 6 contains
concluding remarks.

140
Côte J., Ahmed M., Mateescu G., Impey R. and Quesnel D. (2005).
SEAMLESS AND SECURE AUTHENTICATION FOR GRID PORTALS.
In Proceedings of the First International Conference on Web Information Systems and Technologies, pages 140-145
DOI: 10.5220/0001229501400145
Copyright c© SciTePress

2 GSI-BASED GRID PORTAL
SERVICES

Figure 1: Grid Portal Architecture and Components

The problem with grid portals that we tackle in this
paper is that the client needs to be aware to certain
extent with the grid authentication mechanisms and
operations. Even with the use of grid MyProxy
server as a third entity for maintaining proxy
certificates, the user should go through several steps
to upload his credentials, renewing it if necessary
and destroying it when he opts to. This hinders the
usability of the use of credential repositories and
making them harder to use for novice and non-
computer savvy users. We try to solve those issues
through the addition of new and useful automatic
tools (we called them grid-logon services and
protocols) to manage certificates more easily and
transparently especially against grid portals.
Moreover, we integrated these new modules and
protocols as a new useful feature to other client tools
such as Java-based SSH terminal clients. This would
provide very powerful portable service for end-user
during the grid portal session.

In this section we show the design of the
Credential Management Tools, and then we show
how we added a GSI Authentication module to the
SSHTerm Java application. Finally, we present a
novel Grid Portal Logon Mechanism that enables
transparent single sign-on. Figure 1 depicts an
overview diagram of typical Grid Portal layout. Our
new modules, which we will discuss later in this
paper, are highlighted in grey. We based our portal
implementation and protocols on GridSphere grid
portal (GridSphere].

3 CERTIFICATE MANAGEMENT
AND AUTHENTICATION
MECHANISMS

The Public Key Infrastructure (PKI) is used by most
grid middleware. For example Globus uses GSI
which in turn is based on PKI. Under PKI, a user
generates a private/public key pair using a certificate
request tool; then the user sends his/her public key to
a certificate authority (CA). The CA verifies the
user’s information and provenance. The CA uses its
private key to sign the user’s public key and grants
the user a digital security certificate. The user
receives this certificate from the CA. The private
key along with the signed certificate are the user’s
credentials, which can be used to authenticate and
authorize access to grid resources. Similarly, an
administrator requests a certificate on behalf of the
grid portal entity and for every grid resource in
general.

A grid user could access grid resources using
his/her credentials by way of the portal. Thus, user’s
credentials must be delegated to the portal since it is
the portal that accesses the grid resources on behalf
of the user. This delegation is typically done using a
credential repository (for example, a MyProxy
(Novotny, 2001] repository). Here’s a diagram
(Figure 2) showing several ways of GSI
authentication between a grid client and a grid
resource.

Figure 2: Typical usage of MyProxy repository by grid

portals.

-Scenario A: A command line tool is employed by
the user to send a job request to a grid resource.
Delegation is done using the GSI mechanism.
-Scenario B: A command line tool is used to
delegate his/her credential to a credential repository,
using the GSI mechanism. The user then uses the
portal to send the job request over plain HTTP or
HTTPS. The portal retrieves the user’s credentials
from the repository on behalf of the user and sends
the job request to the grid resource over GSI
connections.

SEAMLESS AND SECURE AUTHENTICATION FOR GRID PORTALS

141

-Scenario C: Assuming valid credentials are already
stored in the MyProxy repository, a grid portal user
simply uses a browser to send a job request from any
location.

During development of our Grid Canada portal
(GridCanada] we followed this approach but quickly
found that pieces were missing to make this process
intuitive and easy to use. In addition, there were no
tools available to Windows and Mac users to
generate certificate requests and renewals. So these
users had to first find a Linux machine with Globus
installed on it to generate their certificate requests
and move their private keys and certificates back to
their favourite operating system, a major security
faux pas. Hence we implemented both of these
command line tools in Java and thus could be run by
any Java-enabled browsers. We have contributed
them to the Globus Java CoG kit. While this Globus
COG kit provided portable certificate management,
users were still required to install the Java CoG kit
and execute command line tools. So the logical next
step was to make this process truly transparent by (i)
providing a graphical user interface; (ii) supporting
“point-and-click” installation of the Java code. So
we developed our credential management tools; a set
of Java applications deployed using Web Start and
Java Plug-in technologies.

Both the Java Plug-in and Web Start technologies
employ code-signing; and PKI to ascertain the
provenance and integrity of the application being
installed. The code is bundled into Jar files and
signed using the Grid portal’s private key. The Jar
files contain a digital signature (an encrypted hash of
the Jar file itself) and a certificate chain. A
certificate chain is a list of hierarchically ordered
public-key certificates and it is used to determine the
ultimate signing authority of a certificate.

Web Start technology can verify the certificate
chain all the ways up to its root CA certificate. It
checks if the root CA certificate is contained in the
database of trusted root CA certificates. Web Start
comes already installed with well-known root CA’s
such as VeriSign Inc. and Entrust Inc. Since our
Grid Canada root CA is not contained in the
database it needs to be manually installed once by
the user.

The certificate management tools described in
this paper support a comprehensive set of
operations: generating a certificate request, a host
certificate request, and a certificate renewal; viewing
a local certificate; revoking a certificate; delegating
credentials to a MyProxy repository. All these tools
are intuitive, easy to use and self-installed using Java
deployment technologies.

4 GSI-SSHTERM
AUTHENTICATION MODULE

This section describes GSI-SSHTerm, a pure
portable Java application (as shown in figure 3) that
enables users to open remote shells on grid
resources. Shell access to grid resources is
sometimes required to debug and inspect remote
processes running on grid resources. As mentioned
in the introduction, we did not find any Java SSH
terminal able to authenticate using the GSI
authentication mechanism. So we designed and
implemented our own GSI authentication module
and integrated it into the SSHTerm tools from the
SSHTools project (SSHTools].

Figure 3: SshAuthentication class hierarchy diagram.

Until now, the Globus Toolkit uses the GSI to

enable secure authentication and communication
over an open network. GSI provides a number of
useful services for Grids, including mutual
authentication and single sign-on. GSI is based on
public key encryption, X.509 certificates, and the
Secure Sockets Layer (SSL) communication
protocol. Extensions to these standards have been
added for single sign-on and delegation. The Globus
Toolkit's implementation of the GSI adheres to the
GSSAPI (RFC2078].

Figure 4: GSI-SSHTerm Interaction diagram.

WEBIST 2005 - INTERNET COMPUTING

142

Our GSI authentication implementation conforms
to the architecture of SSHTools’ SSHTerm
application and to the IETF specification “GSSAPI
Authentication and Key Exchange for the Secure
Shell Protocol” (GSSAPI]. The SSHTerm
application provides password, public key and
keyboard interactive authentication mechanisms. We
have added a GSI authentication module to it.

Now we will describe a grid portal session, which
is shown in figure 4. This scenario is for a user that
connects to the portal from an arbitrary machine
(e.g., a laptop) on which the user’s credentials are
not installed.

The user logs into the Grid Canada Portal, which
brings up a list of grid resources in the
infrastructure. The user could select to login any one
resource of the list. A GSI-SSHTerm application, as
shown in figure 5, is automatically downloaded and
deployed on the client (if necessary) and then starts
automatically. The application starts having the grid
resource’s URL as an input parameter. When the
application starts, the authentication process would
automatically detect that the user is using a terminal
device with no local credentials and thus it prompts
the user for his/her MyProxy account name and
password to retrieve a proxy credential. The
retrieved delegated proxy will be used to mutually
authenticate with the grid resource using the GSI
authentication protocol, which implies credential
delegation.

Figure 5: Connection profile dialog of the SSHTerm.

 Therefore, the user can use shell commands to the
remote resource if needed, as shown in figure 6. He
is also able to access other grid resources using the

same terminal session since he/she has delegated his
credentials on this resource.

Figure 6: Java GSI-SSHTerm showing delegated

credentials.

5 GRID PORTAL LOGON
MECHANISM

In order for the GSI-SSHTerm to be able to retrieve
a credential from a MyProxy server, it needs to
establish a GSI connection to the server. However,
because GSI implies mutual authentication, the
client needs to possess a credential. To break this
circular dependency, an anonymous credential (i.e.,
a credential with no distinguish name) can be used.
For this approach to work, the MyProxy server
needs to be configured to allow anonymous
connections. However, administrators may not allow
this type of identification.

Figure 7: GridLogon Agent/Service interaction diagram.

Another solution would be to delegate the

credentials to an application running on the user’s
local machine through a signed Jar file. The Grid
portal already has the user’s credentials delegated
from a MyProxy server, which it uses to submit jobs
on the user’s behalf. So one could bundle the user’s
credentials into a signed Jar file downloaded over an
HTTPS connection (HTTPS is HTTP combined with
transport layer security (TLS)). This technique
should be used cautiously since it involves
transmitting the user’s private key (via TLS) across
the network.

SEAMLESS AND SECURE AUTHENTICATION FOR GRID PORTALS

143

A GSI-SSHTerm application deployed through
Web Start is very easy to use however it does
require that a user provide his/her MyProxy account
name and password. It also assumes that a MyProxy
server with anonymous GSI authentication enabled
is available and reachable by the client. Getting rid
of this extra step altogether would be ideal. The user
would simply click on a resource link and a shell
would open. To satisfy all of these constraints a new
grid logon mechanism is presented. This mechanism
involves a “grid logon agent” and “grid portal logon
service” pair.

The grid logon agent is an applet that simplifies
the grid portal logon process. This applet works in
concert with the grid portal logon service as shown
in figure 7. The service retrieves a credential and
stores it locally. Simultaneously, it would log the
user into the portal in the usual way. Then when the
user selects a grid resource, the SSHTerm
application will load the local credential from the
location, which the logon applet saved it.

The grid portal logon service is a secure Web
Service hosted by the Grid portal. This service
serves as a front end to the MyProxy server and thus
only the Grid portal (using its portal credentials)
would communicate with the MyProxy server. Since
a secure web service is exposed through the well-
known HTTPS port it ensures that all users will be
able to use it. A grid portal logon service also offers
other benefits like constricting the access to the
MyProxy server and thus gives the grid portal more
control over the use of the MyProxy server. For
instance, users would only be able to log into the
grid portal logon service using their portal account
name. The portal could validate the account name
and the Distinguished Name (DN) of the user’s
certificate. The grid portal logon service could also
poll the MyProxy server and detect when a user’s
delegated proxy is about to expire and notify the
user using his email address retrieved from the
portal database.

We describe the usage scenario between the grid
logon agent and logon service as follows:

1. The user points a web browser at the grid portal
welcome page and clicks on the grid logon agent
applet. Using the applet, the user enters his/her
portal account name and a MyProxy password
(should be different from the portal’s password).
The grid logon agent sends this information to the
grid portal logon service over HTTPS.
2. The grid portal logon service checks if there are
already deployed credentials for this user on the
MyProxy server and if it should be refreshed. In case
of success, the grid portal logon service sends back a
status indicating success and delegates those
credentials to the grid logon agent. In case of failure,

the applet is notified that “credentials/refresh is
required”.
3. If the grid logon agent receives a failed message it
tries to locate credentials on the client machine.

3.1. If a local credential exists it prompts the user
for the private key password, delegates credentials to
the grid portal logon service using a GSSContext
(RFC2078] and sends the portal account name.

3.1.1. The grid portal logon service then
creates a portal account name and certificate’s
distinguish name mapping and asks the portal to
validate this mapping thus insuring that only the
proper user can do MyProxy “put” operation
using this portal account name. If all is ok the
grid portal logon service then puts those
credentials on the MyProxy server and the
process goes to step 5.
3.2. If no local credentials can be found, the user

is in a situation where he/she will be unable to
access grid resources, having no credentials locally
and no credentials on the MyProxy server. The user
should then be notified of the situation and be
invited to log into the grid portal service from a
machine with credentials. The user should also be
reminded that he/she can simply log into the portal
using the portal account name and portal password
but be warned that he/she will not be able to access
any grid resources.
4. If the grid logon agent applet receives an “ok” it
stores the delegated credentials
5. The grid logon agent then generates a URL with
the user’s portal account name and the MyProxy
password as parameters and then tells its parent
browser (the browser that started the grid logon
agent applet in the first place) to load the URL.
6. The portal uses its Single Sign-on mechanism to
authenticate the user using the portal account name
and MyProxy password. Simultaneously it retrieves
the user’s credentials from the MyProxy server.

This grid logon mechanism enables ubiquitous
credential delegation in the sense that credentials are
delegated between the client with or without
certificates and the Grid portal. This mechanism is
also transparent to the user. It does not put any
restrictions on the MyProxy server configuration. It
also uses the well-known and usually permitted
HTTPS port. It gives the portal more control over
what MyProxy account names are used by users.

Finally this mechanism extends the existing
portal authentication mechanism and thus does not
restrict users from using the conventional form-
based portal authentication. Meanwhile the state
during the session between the client browser and
the GridSphere-based grid portal are maintained
through the use of cookies.

WEBIST 2005 - INTERNET COMPUTING

144

6 CONCLUSION

In this paper, we described extensions to the Globus
Toolkit and SSHTerm that support seamless
credential management for accessing grid resources
and support portable secure shell access to grid
resources (GSI-SSH terminal). We also introduced
an innovative portal authentication mechanism using
a grid logon signed applet that would enable client-
side Java code to authenticate to grid resources
directly using GSI mechanisms. The functionality
has been implemented as Java applications that
could be deployed with the Web Start and Java
Plugin technologies. In future, we expect to do some
tests to evaluate the scalability and performance of
our solutions against multiple users and resources.

ACKNOWLEDGEMENTS

We would like to thank Michael Russell of the
GridSphere project at Albert Einstein Institute for
his co-operation in verifying the design of the
GridLogon mechanism. His knowledge of Grid
portals was valuable. We are also grateful to Jim
Basney of the National Center for Supercomputing
Applications for his help in debugging the GSI-
SSHTerm authentication module. His knowledge of
inner workings of the GSI enabled OpenSSH server
was very useful.

REFERENCES

COG: Commodity Grid Kits, http://www-
unix.globus.org/cog/

Foster, I. and Kesselman, C., 1997. Globus: A
metacomputing infrastructure toolkit. The
International Journal of Supercomputer Applications
and High Performance Computing, 11(2), pp. 115–
128.

GridCanada, http://www.gridcanada.ca
GridPort, http://gridport.net
GridSphere project, http://www.gridsphere.org
Grimshaw, A., Wulf, W., and the Legion team, 1997. The

legion vision of a worldwide virtual computer.
Communications of the ACM, 40(1), pp. 39–45.

GSI: Grid Security Infrastructure,
http://www.globus.org/security/

GSSAPI IETF specification “GSSAPI Authentication and
Key Exchange for the Secure Shell Protocol”
http://www.ietf.org/proceedings/01dec/I-D/draft-ietf-
secsh-gsskeyex-02.txt

JGSS: The org.ietf.jgss package,
http://java.sun.com/j2se/1.4.2/docs/api/org/ietf/jgss/pa
ckage-summary.html

Joy, B., Steele, G., Gosling, J., and Bracha, G., 2000. The
Java language specification. Addison-Wesley, second
edition.

Novotny, J., Tuecke, S. and Welch, V., 2001. An Online
Credential Repository for the Grid: MyProxy. 10th
IEEE International Symposium on High Performance
Distributed Computing, San Francisco CA.

RFC2078: IETF specification Generic Security Service
Application Program Interface, Version 2,
http://www.ietf.org/rfc/rfc2078.txt

SSHTools project, http://sourceforge.net/projects/sshtools/
UNICORE project, http://www.unicore.org/

SEAMLESS AND SECURE AUTHENTICATION FOR GRID PORTALS

145

