
RESERVING IMMUTABLE SERVICES THROUGH WEB
SERVICE IMPLEMENTATION VERSIONING

Robert Steele, Takahiro Tsubono
Universit of Technology, Sydney, PO Box 123, Broadway 2007, Sydney, Australia

Keywords: Web Services, versioning, version control

Abstract: Widespread adoption of a Web services-based paradigm for software applications will imply that
applications will typically have potentially many dependencies upon Web services that they invoke or
consume. These invoked services might typically be available from a remote site and be under the
administration of third parties. This scenario implies a significant vulnerability of a Web services-based
application: one or more of the services which it consumes may become altered, hence potentially
“breaking” the application. Such alterations might be such as those that alter the WSDL signature of the
service or could be changes to the underlying service implementation that do not change the WSDL
signature. In this paper, we will focus on the second of these two cases and will introduce a versioning
system that can detect changes to service implementations and that can avoid the breaking of applications
that call services in the face of changes to the implementations of those called services.

1 INTRODUCTION

If the Web Service or Service Oriented Computing
paradigm is to attain widespread adoption there will
need to be a solution to the potential fragility of Web
service-based applications arising through their
dependencies on called Web services. This is
particularly true for shipped applications that can no
longer be modified to accommodate any changes to
Web services that they call.

There are two types of changes that can occur to
Web services. One type of change involves a change
to the service’s WSDL signature: that is, a change to
the service’s set of operations or to their parameters
or parameter types. A second type of change
involves changes to the service’s underlying
implementation that leaves the WSDL signature
unaffected.

Although there are many different causes that
may break the client applications, changes to the
service implementations are significantly risky
which directly influence behaviour of the services.
DLL Hell (Eisenbach, et.al., 2002) was a major issue
that broke other applications in response to
application installations and updaters replacing
shared resources. The problem was not only caused
by inherent software entities, e.g. libraries and

executables, being swapped with their old versions,
but also by new versions producing backward-
incompatibility or new bugs (Anderson, 2000).

The solution of DLL Hell was to provide each
application with the infrastructure of reserving
dependent software entities that are never updated
by other applications. Having learnt from this
experience, the Web service implementation
versioning proposed here reduces risks of “service
hell” for both service providers and requestors by
means of allowing client applications to continue to
use the same versions of services.

1.1 Motivation

A new version of an existing service often replaces
the old version rather than leaving two versions of
the same services operational simultaneously. This is
due to various reasons such as added cost of
maintenance. The old service requestors assume that
service providers never break the existing service
calls. However, such an assumption cannot be
guaranteed in the scenario where existing service
calls use new service implementations that client
applications have not been built and tested against.

Regardless of dynamic or static binding, if the
previous version of the service is unavailable,

125
Steele R. and Tsubono T. (2005).
RESERVING IMMUTABLE SERVICES THROUGH WEB SERVICE IMPLEMENTATION VERSIONING.
In Proceedings of the First International Conference on Web Information Systems and Technologies, pages 125-132
DOI: 10.5220/0001227401250132
Copyright c© SciTePress

service requestors do not have a choice other than to
upgrade to the new version. However, even when
multiple versions are made available, the service
calls are redirected to the one specified by service
providers, not by service requestors. There is no
standardized infrastructure for service requestors to
have intervention into the choice of versions.

The business needs vary across service
requestors. They may not be willing to upgrade to
the new services simply because the current version
provides sufficient functionality (Irani, 2001), while
some other service requestors may. As the number
of service requestors increases, it becomes
complicated to make a modification to the existing
services in a way all those service requestors
involved agree. Leaving the current version of the
Web service allows the service provider to be
released from receiving unexpected claims resulting
from the arbitrary decision to update an existing
service.

Currently UDDI (OASIS, 2004) does not support
finding a version of services based on the versioning
semantics, e.g. meaning of major numbers. The
service requestors need to know the relationship
between versions prior to choosing the appropriate
version of the desired service. However, as the
format of versions and the versioning scheme are
currently not standardized, thus at the worse case, it
could be unique to each service provider. While
Web service orchestration grows in popularity in
response to its capability of SOA (Service Oriented
Architecture), such a non-standardized versioning
scheme increases the complexity of configuration
for service binding. As an example, if a service
endpoint was dynamically chosen from a pool of
services that all claim a conformance to a
standardized service interface definition in a given
industry, a client application may need to apply
different version selection mechanisms to each
service provider.

Even though a service requestor may see the
same WSDL signature, changes may be opaque to
service description. As the service implementation is
basically invisible to client applications, there is no
means for client applications to detect or verify
changes to the target service implementation.

On the other hand, service modification also adds
to the work of developers by enforcing the backward
compatibility when an existing service is to be
updated. However, the backward compatibility issue
is not only on the service interface description, but
also on the semantics of defined data types and the
immutability of the returned set of data against all
possible formation of inputs on a given state. In this
scenario, testing applications in a way functions
retain the same output is full of complexity.
Moreover, to keep the service interface backward

compatible, new service interfaces constrain
available modifications to fall into some types such
as the addition of operations or new optional
parameters to existing operations (Brown and Ellis,
2004; Butek, 2004; W3C 2003). As time goes by, if
these constraints are followed, the service interfaces
grow in their complexity. For instance, when a
deletion of a service operation is denied,
modification continues increasing service operations.
At some point, the maintenance of all operations and
maintenance of the consistency of some of their
attributes/policies such as naming convention,
becomes complex.

To reduce the number of versioned services in
operation, service providers have to own the
responsibility for the consequence of the service
upgrade. Web service implementation versioning
aims to guarantee that service providers do not
dispatch existing service calls to a different version
of the same service without client agreement.

1.2 Paper Outline

Firstly, the current Web service versioning methods
and relevant technologies are described in the next
section. In Section 3, an overview of our Web
service versioning approach will be presented. The
architecture and the procedure for the use of the
version-aware Web service server are then described
in Section 4. The forthcoming issues are discussed in
Section 5. Finally, Section 6 concludes the paper by
wrapping up the presented idea and providing
proposals for the future work.

2 BACKGROUND

 The topic of maintaining the association of an
application and its interdependent components is not
new. Some researches and vendors addressed the
solutions using a versioning strategy. Plasil et. al.
(1998) presented SOFA/DCUP (SOFtware
Application, Dynamic Component UPdating) - a
way to define a set of nested versioned components
and to update a specific component at runtime. .NET
Framework (Microsoft, 2005) tightly couples
applications and the required libraries based on the
assembly versions. Java Product Versioning
Specification (Sun Microsystems, 2003) defines the
method of comprising version details in a package.
To the extent of our knowledge, none of the research
papers have targeted the versioning of Web services
at the time of writing. However this issue is
currently active within the Web Service Description
Working Group (2005). The relevant technologies
and issues are described in the following subsections.

WEBIST 2005 - INTERNET COMPUTING

126

2.1 Version Identification

Where the discussion of Web service versioning is
seen, two approaches are often considered to resolve
the issues of which elements and layers of
application architecture carry version information:
an inclusion of the version in (1) namespace (W3C,
1999) of WSDL elements or (2) service endpoint
URLs.

The former utilizes a namespace in WSDL that
uniquely establishes the logical scope for a group of
WSDL elements. Thus, this versioning strategy
defines a unique namespace for each version of a
service or an operation, for example. As the
namespace does not directly deal with the service
implementation, it needs to be mapped to an
identifier of software entities, which a SOAP (W3C,
2004a) engine can recognise. Web services for J2EE
specification (IBM, 2003) defines to map a
namespace to a Java package (Gosling, et. al., 2000)
that dispatches a service call to an instance of the
class drawn from the associated package.

A version appended URL is often seen on the
Internet. While the format of a version differs in the
purpose of its use, the date-based format is
sometimes preferred than a tuple of incremental
integers. A benefit of using the date format is that
clients can intuitively find the release date, while no
indication of version implications hides the
relationship between different versions.
 Regardless of the formats, URL-based
versioning for Web services causes an infrastructural
issue for Web services architectures. The problem is
in the layer at which URL is evaluated. As for HTTP,
a web server is in charge of evaluating incoming
HTTP requests and forwards them to wherever the
URL is linked to. Thus, if a version selection
mechanism exists in this scenario, the web server is
in charge of parsing a version. Moreover, as such a
server is beyond the control of a SOAP engine, the
versioning issue is forced up to the transport
protocol. Thus, the version-parsing mechanism must
be implemented for every transport protocol. Tasks
of version identification could be delegated to a
layer below the URL in order to insulate a service
endpoint from the versioning issues and, therefore,
service endpoints remains abstract representation of
service location.

2.2 Change Notification

Apart from the versioning method, clients need to
know the occurrence of changes to the service
interfaces and implementation. Some proposals have
been available for informing the client interested
parties of such events.

NSPF (Kalali, et. al., 2003a) and later SOMR
(Kalali, et. al., 2003b) are proposals of frameworks
for notifying service requestors about the status of
services such as availability and changes to service
interfaces. Web Services Eventing (Box, et.al, 2004)
and Web Services Notification (Akamai, et.al, 2004)
are the followers for standardizing such notification
architecture.

The latest UDDI version 3 (W3C, 2004b) also
implemented Subscription API, which notifies
changes in the UDDI registry to its subscribers.
However, the UDDI registry maintains a service
endpoint and the location of the WSDL rather than
the actual WSDL document. As changes in service
implementation are not necessarily reflected to the
service endpoint or WSDL location, the notification
is not invoked without service providers deliberately
altering the registered service description. Thus
maintaining a WSDL repository as suggested by
NSPF and SOMR is still beneficial in terms of
detecting changes in service interfaces.

Unfortunately, service providers are still free of
restrictions when changing implementations behind
the scenes without altering the WSDL. Furthermore,
even though non-changed services might be
maintained by a service provider, a part of their
system may start accessing altered software entities
from third parties, should the dependency of those
entities be disregarded.

2.3 Version Semantics

A typical format of a version number conveys the
interpretation rule and version semantics, by
assigning meaning to each segment of a version and
by reserving specific letters. Although, a number of
well-defined numbering schemes are available
nowadays, to the extent of our knowledge, nothing is
practically accepted as the global standard.
However, many have commonality in ruling the
semantics.

From the perspective of those who are affected
by version changes, the interest is often in the
backward compatibility with the old version. Many
publications on versioning distinguish numbers into
major and minor portions for this purpose.
Typically, major enhancements imply a possibility
of backward incompatibility, whereas minor
enhancement is backward compatible (Brada, 2000;
W3C, 2003).

Vendors concerned with the unit of low-level
software entities equip their published programming
languages with the ability of expressing precise
changes such as revision and build numbers. .NET
Framework (Microsoft, 2005) tightly couples
applications and the required software entities based

RESERVING IMMUTABLE SERVICES THROUGH WEB SERVICE IMPLEMENTATION VERSIONING

127

on the assembly versions. Java Product Versioning
Specification (Sun Microsystems, 2003) defines the
method of comprising a version in a Java package.
In either case, the version details are attached to a set
of software entities, a Java package or .NET
assembly. The relationships between those packages
or assemblies are comparable in relation to the
version semantics. However, these schema come
with a manual configuration of a version and
therefore, there is nothing to bar stating
incompatible changes as compatible.

3 A VERSION-AWARE WEB
SERVICES SERVER OVERVIEW

The server-side system needs to enforce non-change
of version unless the consumer explicitly chooses to
change. This implies that a service-based application
will not unexpectedly break due to changes in the
service implementation. Apart from this basic
motivation, Web service implementation versioning
yields benefits for improving manageability,
reliability, flexibility and visibility of the versioned
services. The major features are summarized as
follows:

• Modification events are enforced to be

reflected from implementation to services.
Thus, service-level version management
become more reliable.

• Inter-service compatibility for service

orchestration is maintainable in relation to
version dependencies (Andrews, et. al.,
2003).

• SCM (Software Configuration

Management) systems on the client side
can manage dependencies of their
applications and remotely implemented
Web services in relation to the versions.

• Developers are allowed to implement both

backward compatible and incompatible
changes to the same endpoint. The URL of
the service endpoint maintains its
representation as of service marketing time.

• Version management details such as a

history and the version graph can be made
available to client applications.

At the time of writing, many extensions to the Web
service architecture e.g. WS-Security and WS-
Reliability are emerging. The SOAP header and its

handler provide a flexible way of adding pre- and/or
post-message processing functionality to Web
services. A version-aware Web service server
utilizes this mechanism by simply incorporating the
version information into the SOAP header. The
considered architecture here is the component based
deployment of service implementations. The
constituents are summarized below.

3.1 Change Detection

For the version-aware Web service server to monitor
the service implementation for changes, some
changes in the component repository and the
configuration of the components’ container should
be transparent to the version management systems.
Therefore, version management systems and
application servers need to collaborate closely with
each other. Resulting benefits: (1) separating roles of
resource management from container specific tasks,
(2) making version management systems
independent of a particular application server as well
as other systems/servers, and (3) enabling version
management of fine-grained software entities such
as packages and classes. Application servers should
detect changes that have occurred to the relevant
component by either push or pull semantics,
otherwise the use of modified components should be
denied. The implementation of the change detection
functionality depends on the SCM systems and will
not be discussed further in this paper.

3.2 Service Immutability

In order to ensure immutability of service
implementations in the component repository, the
version-enabled Web service server uses a digest - a
fingerprint of the service implementation. The
hashing functions, MD5 (Rivest, 1992) and SHA-1
(Eastlake, 2001), are two major candidates to
generate such digests. If a digest is sent with a
SOAP message, the service implementation of
requested version is verified against this. A digest
mismatch will always be a result if the
implementation changes. A digest is generated and
stored for each version of a service. The SCM
system needs to know the managed (and potentially
unmanaged) software entities.

A version-aware Web service server provides a
built-in function for service requestors to retrieve
and preserve the digest of a particular service
version. Service requestors can then verify non-
changes to the service implementation by matching
the local and remote copies of the digests. To avoid
modification to the functions of digest generation,
this function needs to be kept built-in.

WEBIST 2005 - INTERNET COMPUTING

128

3.3 Version Parser

Web Service Implementation Versioning is based on
the idea that multiple versions of service
implementations are available simultaneously.
Therefore, the version-enabled Web service server
should be able to parse a version out of a service
request message. Specifically, this is done by a
Version Handler.

The version number is included in a header of
SOAP messages. When the Version Handler detects
the existence of a version header named Service
Version Header (SVH) in a SOAP request message,
it verifies the existence of the requested version
number against the version repository.

Unlike the case of attaching a version to the
URL, the version-aware Web service server can
differentiate errors due to incorrect endpoint and the
non-existence of a version number. Moreover, the
SVH is also extensible to support an intentional
versioning that takes account of user preferences
specified in the message. This is described in the
next section.

3.4 Version Selection

As seen by current practices, the version format may
not be simple especially where it is concerned with a
wide variety of applications or industry specific
variants. If the new version is not an evolved
component of its baseline, this is not even applicable
to a version graph (Conradi, 1998). However, we
take into account that the client’s concern is not the
format itself but the derived impact to the client
application from changes - compatibility.

While the format may vary among applications,
the interested version group (Bendix, 1996; Gergic,
2003), aka version sets (Conradi, 1998) which is a
versioned item, on the level of product unit is often
as simple as described by major and minor numbers
in this situation. Therefore, the selection of software
entities can be performed by two means: (1)
providing the complete version identifier or (2)
specifying a baseline (partial version identifier)
which leaves the selection of revision and build
numbers, for instance, to be derived from the client
preferences and the up-to-date version graph. Taking
the benefit of XML schema languages, the SVH can
constrain acceptable options of such client
preferences. On the other hand, if a version is totally
missing, then the choice will be either the latest up-
to-date version or a SOAP fault.

4 ARCHITECTURE

A version-aware Web service system provides a way
to decouple the versioned service implementation
from its interface description. Typically, changes to
service implementation occur more frequently than
to its interface. However, if an endpoint URL is to
indicate a version identifier, the number of endpoints
increases by each release of an existing Web service.
More precisely, regardless of non-change to the
abstract interface definition, the concrete
implementation definition may need to specify every
possible version formulation in WSDL. Here, the
version formulation also implies the possible use of
change-based systems for SCM. In such a case, the
possible versions of a service increase exponentially
by the number of versions of the underlying
software entities behind WSDL. This causes a
number of issues: (1) confuses clients with a wide
range of URLs, (2) may multiply dependencies of
WSDL files (3) complicates management of service
endpoints, (4) makes URL non-abstract (5) confuse s
the faults that arise from version mismatch and
incorrect endpoints.

As noted earlier, the solution to these issues we
propose here is to separate a version identifier from
the endpoint URL and the namespace exposed by
WSDL. Thus, the clients configure their application
with a version-free endpoint and namespace. This
reduces the need of re-configuration or re-
deployment of client applications when they want to
bind to new versions, which also help the URL to be
kept meaningful to humans. On the other hand, this
requires a way for the clients to retrieve the same
version of the WSDL document from the same
endpoint as well as for clients to preserve a version
identifier to which their applications are bound.

The following subsections describe procedures
for the service configuration, deployment and
invocation that occur for an installation of the
version-aware Web service server.

4.1 Implementation Deployment

The deployment of software entities go through a
SCM system. While not violating the container
functionality such as security and transactions,
actual service implementations are stored in a
component repository in the SCM. This is necessary
because the maintenance, storage and retrieval of
software entities are more efficient by using SCM
Figure 1 illustrates the procedure of implementation
deployment. The detailed steps follow the figure.

RESERVING IMMUTABLE SERVICES THROUGH WEB SERVICE IMPLEMENTATION VERSIONING

129

1. A software entity is added or checked-in to

the component repository.
2. The version management system generates

a new version for related services and an
associated digest.

3. The version dependency is updated in
response to the semantics of the new
version.

4. The version management system creates a
new component name derived from the one
in the base deployment descriptor. Then,
the new deployment descriptor is generated
with the new component name for
deployment.

5. The version management system notifies
the application server that the new version
of the existing components is available (or
the application server detects it by itself).

6. The application server configures itself
with the new deployment descriptor. The
new deployment does not affect other
components in use. The detailed procedure
of deployment follows the instruction from
application servers so that the architecture
does not defeat the benefits of current
deployment automation.

7. The version management system notifies
the SOAP engine of the new deployment
descriptor for new service configuration.

8. The details of the new version are added to
the UDDI registry if applicable.

9. If the service requestors subscribes for the
notification of changes in the UDDI
registry for the relevant services, the UDDI
communicates with the subscribers for new
versions available.

4.2 Client Application Configuration

Client applications are configured in much the same
way as for non-version-aware Web services. The
only difference is the existence of the SVH in
messages that contains version information. The
procedure is simply:

1. A service requestor obtains a WSDL file.
2. The latest version of WSDL file is returned

from the server.
3. Client applications are implemented in a

way that sends a SOAP message containing
version preferences in the SVH.

4.3 Service Invocation Figure 1: Component deployment procedure

An additional handler in the SOAP engine means the
selection and verification of the correct version is
performed before the invocation of the service
implementation. The selection procedure utilizes
both a namespace of the requested services in the
SOAP message and the SVH. More specifically,
whereas the namespace in the message merely
specifies a version group, the SVH carries a specific
version local to the group.

For the service invocation, the version identifier
means a unique identity for a collection of software
entities that implement a service. When
incorporating the complete version identifier in the
request message, it is guaranteed to be dispatched to
the desired version of software entities. The Figure 2
illustrates the interactions of clients, SOAP engine,
components container in the application server and
version management system. For brevity, other
necessary SOAP handlers are omitted from the
figure. The detailed procedure is as follows:

1. A SOAP message arrives to an

intermediary or the ultimate destination,
either of which is capable of handling the
SVH.

2. When the SVH is detected, it searches for a
matching version identifier from the
version repository. If it is found, then the
Version Handler replaces the namespace of
the requested service in the message with a
version identifier. If it cannot be located or
multiple version identifiers are located,
then the request is rejected with an
appropriate SOAP fault.

3. If the SVH is missing, the service call is
either rejected or dispatched to the most up-
to-date version of the requested service.

4. The return message carries the original
namespace that is identical to the one in the

WEBIST 2005 - INTERNET COMPUTING

130

Figure 2: Service invocation procedure

request message, and a version identifier of
the service executed.

Finally, a version identifier and a digest are the
required ingredients for the verification of service
immutability. The verification of implementation
immutability occurs as a consequence of
incorporating a digest into the SVH; otherwise it
would not be performed. This is due to the
performance concern that the verification puts an
overhead to a service invocation. As well as
allowing clients to verify the service implementation
immutability, on the server side, this provides a
basic protection against the violating interaction that
attempt to alter the existing software entities without
creating a new version.

5 DISCUSSION AND FUTURE
WORK

The main drawback of this approach is the
maintenance complexity of different versions of
components deployed on the same application server.
As the version management is not the primary role
of a component container, it is not attractive to
implement version management functionality into an
application server.

Moreover, in the case of dynamic binding, the
newest service implementation is still only a choice
for a given industry-specified interface

Additionally, a slight performance latency can be
expected due to the process for the version
verification. However, this would not be a major

issue since such a comparison cost is lightened with
the help of caching.

6 CONCLUSION

The versioning issue is a long examined (and
potentially never ending) issue in software
development and management. The collaboration of
SCM systems and SOAP engine simplifies tasks of
both client applications and service developers by
providing automated support for version selection.
This also enables the SOAP engine to spot the exact
place of faults and return a more informative guide
to client applications. This paper has described the
fundamental requirements and methods of versioned
service deployment, version configuration, version
look-up, version identification and change detection,
which is sufficiently feasible to implement with the
help of currently available standards and software
products. The future work will target the evaluation
of architectural resistance to malicious modification
of version identification and service implementation.

REFERENCES

Akamai Technologies, Computer Associates International,
Fujitsu Laboratories of Europe, Globus, Hewlett-
Packard, IBM, SAP, AG, Sonic Software, TIBCO
Software, 2004, Web Services Notification, ,
http://www-
106.ibm.com/developerworks/library/specification/ws-
notification.

RESERVING IMMUTABLE SERVICES THROUGH WEB SERVICE IMPLEMENTATION VERSIONING

131

http://www-106.ibm.com/developerworks/library/specification/ws-notification
http://www-106.ibm.com/developerworks/library/specification/ws-notification
http://www-106.ibm.com/developerworks/library/specification/ws-notification

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein,
J., Leymann, F., Liu, K., Roller, D., Smith, D., Thatte,
S., Trickovic, I. & Weerawarana, S. 2003,
Specification: Business Process Execution Language
for Web Services Version 1.1, http://www-
128.ibm.com/developerworks/library/ws-bpel/.

Anderson, R. 2000, The End of DLL Hell, Microsoft
Cooperation, http://msdn.microsoft.com/library/en-
us/dnsetup/html/dlldanger1.asp.

Bendix, L. 1996 'Fully Supported Recursive Workspaces ',
in, Proceedings of the SCM-6 Workshop on System
Configuration Management Springer-Verlag, pp. 256-
261

Box, D., Cabrera, L.F., Critchley, C., Curbera, F.,
Ferguson, D., Graham, S., Hull, D., Kakivaya, G.,
Lewis, A., Lovering, B., Mihic, M., Niblett, P.,
Orchard, D., Saiyed, J., Samdarshi, S., Schlimmer, J.,
Sedukhin, I., Shewchuk, J., Smith, B., Weerawarana, S.
& Wortendyke, D. 2004, Web Services Eventing (WS-
Eventing), IBM et.al, http://www-
106.ibm.com/developerworks/webservices/library/spec
ification/ws-eventing/.

Brada, P. 2000, SOFA Component Revision Identification,
Department of Software Engineering, Charles
University, Prague.

Brown, K. & Ellis, M. 2004, Best practices for Web
services versioning, IBM, http://www-
106.ibm.com/developerworks/webservices/library/ws-
version/.

Butek, R. 2004, Make minor backward-compatible
changes to your Web services, IBM, http://www-
106.ibm.com/developerworks/webservices/library/ws-
backward.html.

Conradi, R. & Westfechtel, B. 1998 'Version models for
software configuration management ', ACM Comput.
Surv. , vol. 30 no. 2 pp. 232-282

Eastlake, D. & Jones, P. 2001, US Secure Hash Algorithm
1 (SHA1), RFC Editor.

Eisenbach, S., Jurisic, V. & Sadler, C. 2002, 'Feeling the
way through DLL Hell', In The First Workshop on USE
‘02, http://joint.org/use2002/, Málaga, Spain.

Gergic, J. 2003, 'Towards a versioning model for
component-based software assembly', In Proceedings
of ICSM 2003, pp. 138-147.

Gosling, J., Joy, B., Steele, G. & Bracha, G. 2000, The
Java Language Specification, viewed 19 Jan 2005
http://java.sun.com/docs/books/jls/.

IBM 2003, Web services for J2EE Specification,
http://jcp.org/aboutJava/communityprocess/final/jsr921

Irani, R. 2001, Versioning of Web Services - Solving the
Problem of Maintenance,
http://www.webservicesarchitect.com/content/articles/i
rani04.asp.

Kalali, B., Alencar, P.S.C. & Cowan, D.D. 2003a 'NSPF:
Designing a Notification Service Provider Framework
for Web Services ', in, Revised Papers from the NODe
2002 Web and Database-Related Workshops on Web,

Web-Services, and Database Systems Springer-Verlag,
pp. 73-90

Kalali, B., Alencar, P. & Cowan, D. 2003b 'A service-
oriented monitoring registry ', in, Proceedings of the
2003 conference of the Centre for Advanced Studies on
Collaborative research IBM Press, Toronto, Ontario,
Canada pp. 107-121

Microsoft 2005, .NET Framework,
http://msdn.microsoft.com/netframework/.

OASIS 2004, UDDI Version 3.0.2,
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm.

Plasil, F., Balek, D. & Janecek, R. 1998, 'SOFA/DCUP:
Architecture for Component Trading and Dynamic
Updating', In Proceedings of ICCDS '98, IEEE CS
Press, Annapolis, Maryland, USA, pp. 43-52.

Rivest, R. 1992, The MD5 Message-Digest Algorithm,
RFC Editor.

Sun Microsystems 2003, Java Product Versioning
Specification,
http://java.sun.com/j2se/1.4.2/docs/guide/versioning/sp
ec/versioning2.html.

W3C 1999, Namespaces in XML,
http://www.w3.org/TR/REC-xml-names/.

W3C 2003, Versioning XML Languages,
http://www.w3.org/2001/tag/doc/versioning.

W3C 2004a, SOAP specifications,
http://www.w3.org/TR/soap/.

W3C 2005, Web Services Description Working Group,
http://www.w3.org/2002/ws/desc/.

W3C 2004b, Web Service Description Language (WSDL),
http://www.w3.org/TR/wsdl.

WEBIST 2005 - INTERNET COMPUTING

132

http://www-128.ibm.com/developerworks/library/ws-bpel/
http://www-128.ibm.com/developerworks/library/ws-bpel/
http://msdn.microsoft.com/library/en-us/dnsetup/html/dlldanger1.asp
http://msdn.microsoft.com/library/en-us/dnsetup/html/dlldanger1.asp
http://www-106.ibm.com/developerworks/webservices/library/specification/ws-eventing/
http://www-106.ibm.com/developerworks/webservices/library/specification/ws-eventing/
http://www-106.ibm.com/developerworks/webservices/library/specification/ws-eventing/
http://www-106.ibm.com/developerworks/webservices/library/ws-version/
http://www-106.ibm.com/developerworks/webservices/library/ws-version/
http://www-106.ibm.com/developerworks/webservices/library/ws-version/
http://www-106.ibm.com/developerworks/webservices/library/ws-backward.html
http://www-106.ibm.com/developerworks/webservices/library/ws-backward.html
http://www-106.ibm.com/developerworks/webservices/library/ws-backward.html
http://jcp.org/aboutJava/communityprocess/final/jsr921
http://www.webservicesarchitect.com/content/articles/irani04.asp
http://www.webservicesarchitect.com/content/articles/irani04.asp
http://msdn.microsoft.com/netframework/
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm
http://java.sun.com/j2se/1.4.2/docs/guide/versioning/spec/versioning2.html
http://java.sun.com/j2se/1.4.2/docs/guide/versioning/spec/versioning2.html
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/2001/tag/doc/versioning
http://www.w3.org/TR/soap/
http://www.w3.org/2002/ws/desc/
http://www.w3.org/TR/wsdl

