Enabling Spoken Dialogue I nter action About
Team Activities

Laura M. Hiatt and Lawrence Cavedén
1 Computer Science Dept., Carnegie Mellon University, USA

2 CSLlI, Stanford University, USA

Abstract. Spoken language dialogue is a powerful mode for human-robot inter-
action (HRI) in complex, dynamic environments. We describe extensions to an
existing dialogue management system that enables activity-oriented interaction
with multi-robot teams.

1 Introduction

There has been much research in the Multi-Agents Systems literature on frameworks
for robustly managing multi-agent/robot teamwork. Some of the more succesful ap-
proaches involve agents explicitly representing team-level goals and intentions, and
reasoning about their own actions in the context of the team activity (e.g. [1, 2]). There
has also been much work on algorithms and techniques for automated task-allocation
and -negotiation, multi-agent planning, task coordination, etc.

Conversely, our approach is to facilitate human involvment in the multi-agent/robot
task environment. Rather than relying on automated management of multi-agent team
issues, our system engages in conversation with a human operator to perform task-
allocation and to resolve issues that may arise. This is not inconsistent with a partially-
automated approach (and our system does implement some automatic task-reallocation
on failure); however, for the purposes of our research, we delegate as much of the team-
level decision-making to the human operator, and provide the framework for collabo-
ration between human and agents via spoken-language dialogue. In general, we believe
an appropriate model is one afijustable autonomy8], whereby multi-agent team
processes are automated, but human-interaction is initiated when this is more appro-
priate. The spoken-language dialogue interface supports the human-robot interaction
within the contexbf multi-agent teamwork when required.

1.1 Human-Robot Interaction (HRI) via Task-Oriented Dialogue

Previously at CSLI we have built spoken-language dialogue interfaces for human in-
teraction with individual robots. The CSLI Dialogue Manager (CDM) is the core of a
multi-domain dialogue system that has been applied to a humber of applications, in-
cluding control of a (simulated) robotic helicopter [4].

M. Hiatt L. and Cavedon L. (2005).

Enabling Spoken Dialogue Interaction About Team Activities.

In Proceedings of the 1st International Workshop on Multi-Agent Robotic Systems, pages 23-30
DOI: 10.5220/0001196400230030

Copyright © SciTePress

Collaborative speech-based dialogue offers a powerfuliumedor interaction be-
tween humans and complex robots operating in dynamic tirealenvironments, con-
taining multiple concurrent activities and events whichyraacceed, fail, become can-
celled or revised. An interface to a robot operating in sumhditions must be interrupt-
ible, context-dependent, and amenable to multiple threddsnversation, and this has
been one of our prime foci when building dialogue interfagseteams for human-robot
interaction.Task-Oriented Dialogué.e. dialogue about tasks jointly performed by the
human and robot, also requires the context of the task todresented, to enable for ro-
bots to inform the human operator of progress on tasks, answer questions relating
to task-performance or status (e.g. “Why are you doing that?”

These issues are exacerbated in multi-robot settings. &be for natural collabo-
rative interfaces is increased, due to the increased ¢ogjitviad involved in interacting
with multiple robots. Implementing dialogue interactiofttwmultiple robots, however,
introduces new technical challenges, such as: discusBmgdrious stages of team-
activity; minimizing the impact of information overload @¢he human operator; and
managing multi-party conversation (e.g. recognizing Whibot is being spoken tg).

1.2 Team Dialogue

The following short dialogue illustrates some of the fuortlity we have implemented.
This is taken from a (simulated) multi-robotic helicoptemahin and illustrates: (i) a
team-formation sequence involving a robot actingessn-leader(1-6); (ii) individual
robots reporting on their actions (7-9); (iii) a sub-dialegdirected at a specific robot
that involves linking its individual sub-tasks to the ovéteam goal (10-15).

1. User Organize a team to fight the fire at the tower.

2. Team LeadelOK. | will organize a team to fight the fire at the tower.

3. Team LeaderJAV1 will confirm that there is a fire at the tower, and then
UAV1 and UAV2 will fight the fire.

4. Team LeadeHave | formed an acceptable team?

5. User Have UAV2 confirm the fire instead.

6. Team LeaderOK. UAV2 will confirm that there is a fire at the tower, and
then UAV1 and UAV2 will fight the fire.

7. UAV2 | am taking off and flying to the tower.

8. UAV2 | have flown to the tower. There is a fire at the tower.

9. UAV1 | am taking off and flying to the tower.

10. User UAV2, what are you doing?

11. UAV2 | am flying to the lake.

12. User Why?

13. UAV2 To pick up water.

14. User Why?

15. UAV2 Because we are fighting the fire.

This paper describes initial work extending the CSLI Dialedg/anager (CDM) to
allow it to support multi-agent task-oriented dialoguegh® above form. The focus

% These and other issues for multi-party dialogue systems are discugséd in

of this paper is not so much on linguistic issues. Rather, aeai§ on describing the
task-representation framework required to facilitatetshpe of interaction for human
support of multi-agent teams via dialogue. Our approach isxplicitly model team
activity, extending the single-agent model of activity iepented in the single-agent
version of the CDM. The team-activity model is reminiscehteam-planapproaches
to multi-agent teamwork (e.g. [1, 2]) and is used by the CDVelate individual-robot
activity to team-level tasks (e.g. asib above). Other extensions to the CDM include
supporting discussion about team issues (such as teanatiomand task-allocation,
as in 1-6 above), and allowing a mix of directly addressing tdam (via the “team-
leader”), individual agents (for task updates), or not gglirect-addressing at all (and
having the CDM determine the appropriate agent to respaniah, 8 and15 above).

2 Dialogue System Architecture

The CSLI Dialogue System is designed around a componeedtashitecture, mak-
ing use of existing systems for speech recognition, natarguage parsing and gen-
eration, and speech synthesis. These and other comporentmferactive map GUI)
are integrated using an event-driven loosely-coupledidiged architecture, allowing
easy replacement of components by others of similar funatity.

Incoming speech utterances from the user are analyzed assiféd as a type of
dialogue move-i.e. as acommang question answerto a question, etc.—and passed
on to the Dialogue Manager (CDM), which performs a numbemro€tesses: resolving
pronouns (e.g. “it”) and object descriptions (e.g. “the cad’) to actual objects in the
robot’s universe; resolving any ambiguous requests, ceigeimg appropriate questions
to do so (e.g. “Which tower do you want me to fly to?”); taking #mpropriate action
corresponding to the incoming dialogue move (e.gommandmay activate a new
agent task); and generating any appropriate responsetlie.gnswer to a question
asked by the user).

The two central components of the CDM are ialogue Move Tree (DMTand
the Activity Tree The DMT represents the history of the dialogue, in paréicuihe
most recent salient dialogue context; this is used to iné¢ipcoming utterances. The
DMT is designed to support multi-threaded, multi-topic wensations, as required for
conversations in highly dynamic complex domains (see 4 @lr focus here is on the
Activity Tree.

2.1 Task-Oriented Dialogue and the Activity Tree

The CSLI Dialogue Manager has been designed to sujgnttactivitieswhich require
collaboration between the human operator and an inteliiggent/robot. As the human
operator works with the agent, it is critical that they mainta shared conception of the
state of the world, and in particular the status of the aitiwibeing performed.

To facilitate this, the Dialogue Manager incorporates & Activity Modelto me-
diate between it and the agent/robot. The Activity Modelgisis of a language for
writing activity recipesthat support conversation about the activities the agegntfyg
performs. These activity representations play a numbemgbitant roles within the

Dialogue Manager: identifying the properties of actistteat must be specified by fur-
ther dialogue (e.g. thdestinationof a “fly” command); disambiguating requests; and
providing a framework for negotiating resource-conflice ¥icus here on their use in
the Activity Treeto model the status of activity-execution.

A recipe is a declarative description of a command (sucfiyasnd the slots to
be filled by the arguments the command takes (sualeatnation. Hence, a recipe is
reminiscent of a STRIPS planning operator, but is not usedmérol behaviour, only to
represent the actions an agent can perform in order to supmarersation about them.
In this sense, the library of recipes is similar in concepthi® use of plan libraries in
[7-9].

A spoken command uttered by the human operator is analyzkttamslated into
a partially specifiedJnresolved Activitywhich is added to the Activity Tree. An Un-
resolved Activity is a slot-based representation of theining utterance without fully
interpreting the language-based descriptions. For examaptommand such as “Go to
the tower” generates an Unresolved Activity as follows:

action:ver b(go)
arg:pp(to, [the tower])

whereverb indicates the action word amgp indicates a phrase describing an argu-
ment to the actiof.At this point, different possible activities could actyathatch the
request: e.g. a robot mayalk or fly to fulfill a “go” command, depending on its capa-
bilities (defined via its Activity Model).

The system attempts to fullgesolvethe activity: mapping the verb to the appro-
priate Activity Model recip€, finding objects that are referred to, or asking the human
operator questions in order to gather further informatfaequired. Once the activity
has been fully resolved—i.e., once enough information has lgathered so the activ-
ity can be executed—it is sent to the agent to be executed.i&xecuted, the agent
updates the state of the activity, which is reflected in thwiags node on the Activity
Tree, and the dialogue manager in turn is notified of thesategdsee Figure.

At any point, an activity can be in one of a number of stated: r esol ved (par-
tially described)r esol ved (fully described)cur r ent , suspended, cancel | ed,
done, etc. The Activity Tree, then, mediates all communicatietween the dialogue
manager and the agent, providing a layer of abstraction bghithe dialogue manager
can communicate with any task-oriented agent.

This architecture contrasts with a simple command-andrebapproach in which
the dialogue manager simply sends off commands to the agdrhan forwards all re-
ports sent to it by the agent to the human operator. Firstargahfost, the tree structure
provides an explicit means of representing the relatignahiong activities being exe-
cuted by the system. The decomposition allows the dialogstes to make intelligent

4 PP denoteprepositional phraséut the linguistic category is not important here.

5 Mapping rules to perform this are part of the Activity Model.

® |deally, this process keeps the Activity Tree synchronized with the agewti task execution,
although some lag is possible.

Activity Tree Agent

Goals
commands

task status Execution
updates monitoring

Fig. 1. Interaction between Activity Tree and agent

decisions about what changes in the world are conversé#liia@propriate, and which
need not be mention€d.

Finally, the Activity Tree provides a framework for answegiqueries about activity
state (“What are you doing?”), revising a previous commandti@rance (“Make that
the tower instead”), and for explaining behavior (“Why are ylwing that?”); see [10].

3 Multi-Agent Dialogue M anagement

Extending the CDM to handle multi-agent dialogue involwed architectural changes:

1. adding arAgent Manageto mediate between the CDM and multiple agents;
2. extending the Activity Tree to contain activities perfead by multiple agents.

3.1 Agent Manager

The Agent Manager is responsible for selecting the mostagjate agent to handle
an issued command, or to handle a query. Each dialogueezhafent registers itself
with the Agent Manager by providing:

1. aunique name;

2. adescription of its capabilities (i.e. an Activity Moylel

3. an agenDM proxy, i.e., agent-specific code that interprets the slot-basee-U
solved Activity representation of commands as construbtethe Dialogue Man-
ager.

User utterances, particularly commands, are distribut¢lld appropriate device as
follows: when possible, a user utterance is assumed toreentn existing thread of
conversation, e.g. as in a follow-up question suchasr 14 in the example in Section

" In general, the expectation is that task decomposition and execution iketdndsome ex-
ternal plan-execution engine residing on the agent. This requires saeggation with the
plan-executor itself—notifications of task status changes need to be $batAactivity Tree.

1.2. If this is not the case—e.q. it is a new command—then thenxlglanager deter-
mines which agent should receive the utterance, based abitiips. An Unresolved
Activity representation of the command is sent to each tegid agent proxy, which
then attempts to interpret what the words and phrases intinesdlved Activity mean,
and whether they correspond to actions that the agent cdorme(i.e. whether the
action matches a recipe).

Each agent indicates whether it can definitely/possibiffamdle the command. If
one of the agents that can handle the command imtbet conversationally salieone
(i.e. the agent to have most recently communicated with gee)fi then this agent is
selected to handle the command. For some commands, it ibjeobst multiple agents
could handle it, even in different ways: e.g. a UAV or a grouoigot could both handle
“Go to the tower”. In the absence of definitive selectionesid, the Agent Manager
generates a disambiguation question for the user to angwsrcollaborating with the
user in this decision-process:

User. Check if there is a fire at the tower.

DM: There are two agents that can currently perform this tals&ulsl | assign
this task to Robotl or Robot2?

User. Robotl.

DM: OK.

‘ Dialogue Manager ‘

Unresolve(:i

e Response /
Activity

Disambig question

Agent Manager

Unresolved -,
Activity -~

Fig. 2. Information flow during task assignment from utterance

3.2 Multi-Agent Team-Task M anagement

In order to facilitate task-oriented communication betw#e user and multiple agents,
an integrated Activity Tree is maintained by the CDM, coniiag all tasks that any

agent has handled. The Activity Tree is synchronized witthesgent's task execution
management, which allows the dialogue manager to providergefeedback about

the progress, success and failure of tasks belonging torahglaagents. Thus reports
about task status, completion, failures, etc., are stilegated from the Activity Tree.

8 salience is reset out after a specified time period.

Team tasks generally require multiple agents to execute.ti@ur approach in-
volves assigning a complex task to a single agent, desidaatéeing in the roleeam-
leader. A team-leaderagent’s Activity Model contains recipes correspondingasks
designed to be carried out by multiple agents. In effect,nthuti-agent team task is
assigned to théeam-leaderagent, which is then responsible fdelegatingsub-tasks
to appropriate agents via the Agent Manager—i.e. iftd@n-leaderagent’s Activity
Model contains a sub-task marked as to be performed by aetitfagent, then it sends
a request to the Agent Manager which allocates an agent ttldhtire sub-task.

The basic Activity Model scripting language has been ex¢entd accommodate
the notion of task-delegation by allowing optional tagsiagfatasks to specify which
agent should handle a sub-task. The specialS&)E-OTHERs used to designate
that a different agent (as opposed to the agent to which #kestaipt belongs) should
be assigned the subtask. The g -AGENTScan also be used to designate that all
agents that support this activity should be assigned thiaskibif no appropriate agent
is found, then the parent task fails.

Defining team behaviour via such team-activity recipesaadloonstraints to be set
on team activity across multi-robot activity. For exammdeam searchmay specify
that different robots search different locations of theagiebe searched. Further, the
notion of task success can be explicitly tied to success Ipeaific team-member, all
team-members, or any team-member. For exampleam searchask can be defined
to succeed iinyrobot involved in the task succeeds in finding the targetaibfénce
the team goal is successful, all team participants arerimédrof this fact, leading them
to terminate their own activity on any related sub-task (&}).

In order to maintain agent-independent task executior) agent only maintains
knowledge about its own sub-tasks and their progress. étttie agent responsible for
the main task keeps a record of which agents were assignedbiasks, but does not
maintain any information on further sub-task decompaositfonly the CDM’s Activity
Tree maintains a complete team-activity representatiothh@nce can support dialogue
on the complete team activity. Agents also maintain theimglahip to the team-goals
that spawned their individual tasks: this is used to impleivee commitment to the
team-goal, which is an important requirement for robusinteativity [1], and also
allows individual agents to support dialogue on how theireunt activity relates to the
team-level goals.

3.3 Dialogue About Team Formation

Explicit representation of team activity enables dialogbeut the teamwork process
itself, such as team formation. For example, the processsifjaing agents to roles
in a team Activity Model may be communicated to the user, wienthas the option

of confirming or modifying the team. This contrasts with thany techniques (e.g.

auctions, Contract Net-style bidding) used for team foromatind task allocation in

the multi-agent literature, and particularly in role-fij in open agent societies [11];
again, our approach is that this is process is performedllatmration with the user.

The first part of the sample dialogue in Section 1.2 illugsaeam formation. Team
formation dialogue can also be seen as a rudimentary forregdtiation, whereby the

team-leademmgent proposes a team and the user accepts or revises it.

Similarly, theteam-leadergent is able to reorganize a team if one of the members
fails to complete its sub-task. Again, this is done in cotadigdn with the user—the
standard task-reporting functionality [6] of the CDM refsothe task failure, and the
team-leadergent reports on attempts to re-assign the sub-task toeaatitfagent.

4 Discussion

We have described initial steps towards flexible dialoguth wéams of robots, inter-
mingled with dialogue with individual team-members. Weideat the approach is im-
portant: managing cognitive load during interaction withltiple robots and their tasks
requires the user to be able to shift level of discussion ¢ontlore abstract team-task
level, rather than necessarily conversing at the indidithwel and managing all coor-
dination and interactions between team members.

There are several directions to extend this work, both imseuf linguistic dialogue
modeling and in terms of team-management. For example, e toeaddress more of
the issues identified by Traum as problems in multi-partjodiae [5]. We also plan to
support more elaborate negotiation dialogues, followit?j.[We also need to address
the information-overload issue that is exacerbated in thkifmobot setting; this could
be partly alleviated by robots being aware of the compledodiue context, including
contributions by other robots.

References

1. Tambe, M.: Towards flexible teamwork. J. Artificial Intelligence Resk7 (1997)

2. Howden, N., Ronnquist, R., Hodgson, A., Lucas, A.: JACK inteliigggents—summary of
an agent infrastructure. In: Int'l Conf. on Autonomous Agents, Meal (2001)

3. Scerri, P., Pynadath, D., Tambe, M.: Toward adjustable autoriontkie real world. J. Al
Research (2002)

4. Lemon, O., Gruenstein, A., Battle, A., Peters, S.: Multi-tasking atidlzorative activities
in dialogue systems. In: Proc. 3rd SIGdial W’shop on Discourse aatb@ue, Phil. (2002)

5. Traum, D.: Issues in multi-party dialogues. In Dignum, F., ed.:akdes in Agent Commu-
nication, LNAI 2922. Springer-Verlag (2004)

6. Lemon, O., Gruenstein, A., Peters, S.: Collaborative activitiesrault-tasking in dialogue
systems. Traitement Automatique des Langues (T43.(2002)

7. Allen, J.F., Schubert, L.K., Ferguson, G., Heeman, P., Hwang., Kato, T., Light, M.,
Martin, N.G., Miller, B.W., Poesio, M., Traum, D.R.: The TRAINS jrot: A case study in
building a conversational planning agent. J. Experimental and ThealrAli@ (1995)

8. Fitzgerald, W., Firby, R.J.: The dynamic predictive memory archite: integrating lan-
guage with task execution. In: IEEE Symp. on Intelligence and Systesh ViDC (1998)

9. Rich, C., Sidner, C.L., Lesh, N.: COLLAGEN: Applying collabovatidiscourse theory to
human-computer interaction. Al Magazi@2(4) (2001)

10. Gruenstein, A., Cavedon, L.: Using an activity model to addresgessin task-oriented
dialogue interaction over extended periods. In: AAAI Spring Symposiunrinteraction
Between Humans and Autonomous Systems over Extended Perioder&{@004)

11. Dastani, M., Dignum, V., Dignum, F.: Role-assignment in openggpieties. In: AAMAS-
03, Melbourne (2003)

12. Traum, D., Rickel, J., Gratch, J., Marsella, S.: Negotiation owhsta hybrid human-agent
teams for simulation-based training. In: AAMAS-03, Melbourne (2003)

