
Enabling Spoken Dialogue Interaction About
Team Activities

Laura M. Hiatt1 and Lawrence Cavedon2

1 Computer Science Dept., Carnegie Mellon University, USA

2 CSLI, Stanford University, USA

Abstract. Spoken language dialogue is a powerful mode for human-robot inter-
action (HRI) in complex, dynamic environments. We describe extensions to an
existing dialogue management system that enables activity-oriented interaction
with multi-robot teams.

1 Introduction

There has been much research in the Multi-Agents Systems literature on frameworks
for robustly managing multi-agent/robot teamwork. Some of the more succesful ap-
proaches involve agents explicitly representing team-level goals and intentions, and
reasoning about their own actions in the context of the team activity (e.g. [1, 2]). There
has also been much work on algorithms and techniques for automated task-allocation
and -negotiation, multi-agent planning, task coordination, etc.

Conversely, our approach is to facilitate human involvment in the multi-agent/robot
task environment. Rather than relying on automated management of multi-agent team
issues, our system engages in conversation with a human operator to perform task-
allocation and to resolve issues that may arise. This is not inconsistent with a partially-
automated approach (and our system does implement some automatic task-reallocation
on failure); however, for the purposes of our research, we delegate as much of the team-
level decision-making to the human operator, and provide the framework for collabo-
ration between human and agents via spoken-language dialogue. In general, we believe
an appropriate model is one ofadjustable autonomy[3], whereby multi-agent team
processes are automated, but human-interaction is initiated when this is more appro-
priate. The spoken-language dialogue interface supports the human-robot interaction
within the contextof multi-agent teamwork when required.

1.1 Human-Robot Interaction (HRI) via Task-Oriented Dialogue

Previously at CSLI we have built spoken-language dialogue interfaces for human in-
teraction with individual robots. The CSLI Dialogue Manager (CDM) is the core of a
multi-domain dialogue system that has been applied to a number of applications, in-
cluding control of a (simulated) robotic helicopter [4].

M. Hiatt L. and Cavedon L. (2005).
Enabling Spoken Dialogue Interaction About Team Activities.
In Proceedings of the 1st International Workshop on Multi-Agent Robotic Systems, pages 23-30
DOI: 10.5220/0001196400230030
Copyright c© SciTePress



Collaborative speech-based dialogue offers a powerful medium for interaction be-
tween humans and complex robots operating in dynamic, real-time environments, con-
taining multiple concurrent activities and events which may succeed, fail, become can-
celled or revised. An interface to a robot operating in such conditions must be interrupt-
ible, context-dependent, and amenable to multiple threadsof conversation, and this has
been one of our prime foci when building dialogue interface systems for human-robot
interaction.Task-Oriented Dialogue, i.e. dialogue about tasks jointly performed by the
human and robot, also requires the context of the task to be represented, to enable for ro-
bots to inform the human operator of progress on tasks, or to answer questions relating
to task-performance or status (e.g. “Why are you doing that?”).

These issues are exacerbated in multi-robot settings. The need for natural collabo-
rative interfaces is increased, due to the increased cognitive load involved in interacting
with multiple robots. Implementing dialogue interaction with multiple robots, however,
introduces new technical challenges, such as: discussing the various stages of team-
activity; minimizing the impact of information overload onthe human operator; and
managing multi-party conversation (e.g. recognizing which robot is being spoken to).3

1.2 Team Dialogue

The following short dialogue illustrates some of the functionality we have implemented.
This is taken from a (simulated) multi-robotic helicopter domain and illustrates: (i) a
team-formation sequence involving a robot acting asteam-leader(1-6); (ii) individual
robots reporting on their actions (7-9); (iii) a sub-dialogue directed at a specific robot
that involves linking its individual sub-tasks to the overall team goal (10-15).

1. User: Organize a team to fight the fire at the tower.
2. Team Leader: OK. I will organize a team to fight the fire at the tower.
3. Team Leader: UAV1 will confirm that there is a fire at the tower, and then
UAV1 and UAV2 will fight the fire.
4. Team Leader: Have I formed an acceptable team?
5. User: Have UAV2 confirm the fire instead.
6. Team Leader: OK. UAV2 will confirm that there is a fire at the tower, and
then UAV1 and UAV2 will fight the fire.
7. UAV2: I am taking off and flying to the tower.
8. UAV2: I have flown to the tower. There is a fire at the tower.
9. UAV1: I am taking off and flying to the tower.
10. User: UAV2, what are you doing?
11. UAV2: I am flying to the lake.
12. User: Why?
13. UAV2: To pick up water.
14. User: Why?
15. UAV2: Because we are fighting the fire.

This paper describes initial work extending the CSLI Dialogue Manager (CDM) to
allow it to support multi-agent task-oriented dialogues ofthe above form. The focus

3 These and other issues for multi-party dialogue systems are discussed in[5].



of this paper is not so much on linguistic issues. Rather, we focus on describing the
task-representation framework required to facilitate thetype of interaction for human
support of multi-agent teams via dialogue. Our approach is to explicitly model team
activity, extending the single-agent model of activity implemented in the single-agent
version of the CDM. The team-activity model is reminiscent of team-planapproaches
to multi-agent teamwork (e.g. [1, 2]) and is used by the CDM torelate individual-robot
activity to team-level tasks (e.g. as in15 above). Other extensions to the CDM include
supporting discussion about team issues (such as team-formation and task-allocation,
as in 1-6 above), and allowing a mix of directly addressing the team (via the “team-
leader”), individual agents (for task updates), or not using direct-addressing at all (and
having the CDM determine the appropriate agent to respond, as in13and15above).

2 Dialogue System Architecture

The CSLI Dialogue System is designed around a component-based architecture, mak-
ing use of existing systems for speech recognition, naturallanguage parsing and gen-
eration, and speech synthesis. These and other components (e.g. interactive map GUI)
are integrated using an event-driven loosely-coupled distributed architecture, allowing
easy replacement of components by others of similar functionality.

Incoming speech utterances from the user are analyzed and classified as a type of
dialogue move—i.e. as acommand, question, answerto a question, etc.—and passed
on to the Dialogue Manager (CDM), which performs a number of processes: resolving
pronouns (e.g. “it”) and object descriptions (e.g. “the redcar”) to actual objects in the
robot’s universe; resolving any ambiguous requests, or generating appropriate questions
to do so (e.g. “Which tower do you want me to fly to?”); taking theappropriate action
corresponding to the incoming dialogue move (e.g. acommandmay activate a new
agent task); and generating any appropriate response (e.g.the answer to a question
asked by the user).

The two central components of the CDM are theDialogue Move Tree (DMT)and
the Activity Tree. The DMT represents the history of the dialogue, in particular, the
most recent salient dialogue context; this is used to interpret incoming utterances. The
DMT is designed to support multi-threaded, multi-topic conversations, as required for
conversations in highly dynamic complex domains (see [4, 6]). Our focus here is on the
Activity Tree.

2.1 Task-Oriented Dialogue and the Activity Tree

The CSLI Dialogue Manager has been designed to supportjoint-activitieswhich require
collaboration between the human operator and an intelligent agent/robot. As the human
operator works with the agent, it is critical that they maintain a shared conception of the
state of the world, and in particular the status of the activities being performed.

To facilitate this, the Dialogue Manager incorporates a rich Activity Modelto me-
diate between it and the agent/robot. The Activity Model consists of a language for
writing activity recipesthat support conversation about the activities the agent actually
performs. These activity representations play a number of important roles within the



Dialogue Manager: identifying the properties of activities that must be specified by fur-
ther dialogue (e.g. thedestinationof a “fly” command); disambiguating requests; and
providing a framework for negotiating resource-conflict. We focus here on their use in
theActivity Treeto model the status of activity-execution.

A recipe is a declarative description of a command (such asfly) and the slots to
be filled by the arguments the command takes (such asdestination). Hence, a recipe is
reminiscent of a STRIPS planning operator, but is not used tocontrol behaviour, only to
represent the actions an agent can perform in order to support conversation about them.
In this sense, the library of recipes is similar in concept tothe use of plan libraries in
[7–9].

A spoken command uttered by the human operator is analyzed and translated into
a partially specifiedUnresolved Activity, which is added to the Activity Tree. An Un-
resolved Activity is a slot-based representation of the incoming utterance without fully
interpreting the language-based descriptions. For example, a command such as “Go to
the tower” generates an Unresolved Activity as follows:

action:verb(go)
arg: pp(to, [the tower])

whereverb indicates the action word andpp indicates a phrase describing an argu-
ment to the action.4 At this point, different possible activities could actually match the
request: e.g. a robot maywalk or fly to fulfill a “go” command, depending on its capa-
bilities (defined via its Activity Model).

The system attempts to fullyresolvethe activity: mapping the verb to the appro-
priate Activity Model recipe,5 finding objects that are referred to, or asking the human
operator questions in order to gather further information if required. Once the activity
has been fully resolved—i.e., once enough information has been gathered so the activ-
ity can be executed—it is sent to the agent to be executed. As itis executed, the agent
updates the state of the activity, which is reflected in the activity’s node on the Activity
Tree, and the dialogue manager in turn is notified of these updates: see Figure 1.6

At any point, an activity can be in one of a number of states:not resolved (par-
tially described),resolved (fully described),current,suspended,cancelled,
done, etc. The Activity Tree, then, mediates all communication between the dialogue
manager and the agent, providing a layer of abstraction by which the dialogue manager
can communicate with any task-oriented agent.

This architecture contrasts with a simple command-and-control approach in which
the dialogue manager simply sends off commands to the agent and then forwards all re-
ports sent to it by the agent to the human operator. First and foremost, the tree structure
provides an explicit means of representing the relationship among activities being exe-
cuted by the system. The decomposition allows the dialogue system to make intelligent

4 PP denotesprepositional phrasebut the linguistic category is not important here.
5 Mapping rules to perform this are part of the Activity Model.
6 Ideally, this process keeps the Activity Tree synchronized with the agent’s own task execution,

although some lag is possible.



Activity Tree
 Agent


Goals


Execution

monitoring


commands


task status

updates


Fig. 1. Interaction between Activity Tree and agent

decisions about what changes in the world are conversationally appropriate, and which
need not be mentioned.7

Finally, the Activity Tree provides a framework for answering queries about activity
state (“What are you doing?”), revising a previous command orutterance (“Make that
the tower instead”), and for explaining behavior (“Why are you doing that?”); see [10].

3 Multi-Agent Dialogue Management

Extending the CDM to handle multi-agent dialogue involved two architectural changes:

1. adding anAgent Managerto mediate between the CDM and multiple agents;
2. extending the Activity Tree to contain activities performed by multiple agents.

3.1 Agent Manager

The Agent Manager is responsible for selecting the most appropriate agent to handle
an issued command, or to handle a query. Each dialogue-enabled agent registers itself
with the Agent Manager by providing:

1. a unique name;
2. a description of its capabilities (i.e. an Activity Model);
3. an agentDM proxy, i.e., agent-specific code that interprets the slot-based Unre-

solved Activity representation of commands as constructedby the Dialogue Man-
ager.

User utterances, particularly commands, are distributed to the appropriate device as
follows: when possible, a user utterance is assumed to continue an existing thread of
conversation, e.g. as in a follow-up question such as12or 14 in the example in Section

7 In general, the expectation is that task decomposition and execution is handled by some ex-
ternal plan-execution engine residing on the agent. This requires some integration with the
plan-executor itself—notifications of task status changes need to be sent tothe Activity Tree.



1.2. If this is not the case—e.g. it is a new command—then the Agent Manager deter-
mines which agent should receive the utterance, based on capabilities. An Unresolved
Activity representation of the command is sent to each registered agent proxy, which
then attempts to interpret what the words and phrases in the Unresolved Activity mean,
and whether they correspond to actions that the agent can perform (i.e. whether the
action matches a recipe).

Each agent indicates whether it can definitely/possibly/not handle the command. If
one of the agents that can handle the command is themost conversationally salientone
(i.e. the agent to have most recently communicated with the user),8 then this agent is
selected to handle the command. For some commands, it is possible that multiple agents
could handle it, even in different ways: e.g. a UAV or a groundrobot could both handle
“Go to the tower”. In the absence of definitive selection criteria, the Agent Manager
generates a disambiguation question for the user to answer,thus collaborating with the
user in this decision-process:

User: Check if there is a fire at the tower.
DM: There are two agents that can currently perform this task. Should I assign
this task to Robot1 or Robot2?
User: Robot1.
DM: OK.

Fig. 2. Information flow during task assignment from utterance

3.2 Multi-Agent Team-Task Management

In order to facilitate task-oriented communication between the user and multiple agents,
an integrated Activity Tree is maintained by the CDM, containing all tasks that any
agent has handled. The Activity Tree is synchronized with each agent’s task execution
management, which allows the dialogue manager to provide generic feedback about
the progress, success and failure of tasks belonging to any and all agents. Thus reports
about task status, completion, failures, etc., are still generated from the Activity Tree.

8 Salience is reset out after a specified time period.



Team tasks generally require multiple agents to execute them. Our approach in-
volves assigning a complex task to a single agent, designated as being in the roleteam-
leader. A team-leaderagent’s Activity Model contains recipes corresponding to tasks
designed to be carried out by multiple agents. In effect, themulti-agent team task is
assigned to theteam-leaderagent, which is then responsible fordelegatingsub-tasks
to appropriate agents via the Agent Manager—i.e. if theteam-leaderagent’s Activity
Model contains a sub-task marked as to be performed by a different agent, then it sends
a request to the Agent Manager which allocates an agent to handle the sub-task.

The basic Activity Model scripting language has been extended to accommodate
the notion of task-delegation by allowing optional tags against tasks to specify which
agent should handle a sub-task. The special tagSOME-OTHERis used to designate
that a different agent (as opposed to the agent to which the task script belongs) should
be assigned the subtask. The tagALL-AGENTScan also be used to designate that all
agents that support this activity should be assigned the subtask. If no appropriate agent
is found, then the parent task fails.

Defining team behaviour via such team-activity recipes allows constraints to be set
on team activity across multi-robot activity. For example,a team searchmay specify
that different robots search different locations of the area to be searched. Further, the
notion of task success can be explicitly tied to success by a specific team-member, all
team-members, or any team-member. For example, ateam searchtask can be defined
to succeed ifany robot involved in the task succeeds in finding the target object. Once
the team goal is successful, all team participants are informed of this fact, leading them
to terminate their own activity on any related sub-task (c.f. [1]).

In order to maintain agent-independent task execution, each agent only maintains
knowledge about its own sub-tasks and their progress. Further, the agent responsible for
the main task keeps a record of which agents were assigned to sub-tasks, but does not
maintain any information on further sub-task decomposition. Only the CDM’s Activity
Tree maintains a complete team-activity representation, and hence can support dialogue
on the complete team activity. Agents also maintain the relationship to the team-goals
that spawned their individual tasks: this is used to implement a commitment to the
team-goal, which is an important requirement for robust team-activity [1], and also
allows individual agents to support dialogue on how their current activity relates to the
team-level goals.

3.3 Dialogue About Team Formation

Explicit representation of team activity enables dialogueabout the teamwork process
itself, such as team formation. For example, the process of assigning agents to roles
in a team Activity Model may be communicated to the user, who then has the option
of confirming or modifying the team. This contrasts with the many techniques (e.g.
auctions, Contract Net-style bidding) used for team formation and task allocation in
the multi-agent literature, and particularly in role-filling in open agent societies [11];
again, our approach is that this is process is performed in collaboration with the user.
The first part of the sample dialogue in Section 1.2 illustrates team formation. Team
formation dialogue can also be seen as a rudimentary form of negotiation, whereby the
team-leaderagent proposes a team and the user accepts or revises it.



Similarly, theteam-leaderagent is able to reorganize a team if one of the members
fails to complete its sub-task. Again, this is done in consultation with the user—the
standard task-reporting functionality [6] of the CDM reports the task failure, and the
team-leaderagent reports on attempts to re-assign the sub-task to a different agent.

4 Discussion

We have described initial steps towards flexible dialogue with teams of robots, inter-
mingled with dialogue with individual team-members. We believe the approach is im-
portant: managing cognitive load during interaction with multiple robots and their tasks
requires the user to be able to shift level of discussion to the more abstract team-task
level, rather than necessarily conversing at the individual level and managing all coor-
dination and interactions between team members.

There are several directions to extend this work, both in terms of linguistic dialogue
modeling and in terms of team-management. For example, we need to address more of
the issues identified by Traum as problems in multi-party dialogue [5]. We also plan to
support more elaborate negotiation dialogues, following [12]. We also need to address
the information-overload issue that is exacerbated in the multi-robot setting; this could
be partly alleviated by robots being aware of the complete dialogue context, including
contributions by other robots.

References

1. Tambe, M.: Towards flexible teamwork. J. Artificial Intelligence Research7 (1997)
2. Howden, N., Ronnquist, R., Hodgson, A., Lucas, A.: JACK intelligent agents—summary of

an agent infrastructure. In: Int’l Conf. on Autonomous Agents, Montreal (2001)
3. Scerri, P., Pynadath, D., Tambe, M.: Toward adjustable autonomyfor the real world. J. AI

Research (2002)
4. Lemon, O., Gruenstein, A., Battle, A., Peters, S.: Multi-tasking and collaborative activities

in dialogue systems. In: Proc. 3rd SIGdial W’shop on Discourse and Dialogue, Phil. (2002)
5. Traum, D.: Issues in multi-party dialogues. In Dignum, F., ed.: Advances in Agent Commu-

nication, LNAI 2922. Springer-Verlag (2004)
6. Lemon, O., Gruenstein, A., Peters, S.: Collaborative activities andmulti-tasking in dialogue

systems. Traitement Automatique des Langues (TAL)43 (2002)
7. Allen, J.F., Schubert, L.K., Ferguson, G., Heeman, P., Hwang, C.H., Kato, T., Light, M.,

Martin, N.G., Miller, B.W., Poesio, M., Traum, D.R.: The TRAINS project: A case study in
building a conversational planning agent. J. Experimental and Theoretical AI 7 (1995)

8. Fitzgerald, W., Firby, R.J.: The dynamic predictive memory architecture: integrating lan-
guage with task execution. In: IEEE Symp. on Intelligence and Systems, Wash. DC (1998)

9. Rich, C., Sidner, C.L., Lesh, N.: COLLAGEN: Applying collaborative discourse theory to
human-computer interaction. AI Magazine22(4) (2001)

10. Gruenstein, A., Cavedon, L.: Using an activity model to address issues in task-oriented
dialogue interaction over extended periods. In: AAAI Spring Symposiumon Interaction
Between Humans and Autonomous Systems over Extended Periods, Stanford (2004)

11. Dastani, M., Dignum, V., Dignum, F.: Role-assignment in open agent societies. In: AAMAS-
03, Melbourne (2003)

12. Traum, D., Rickel, J., Gratch, J., Marsella, S.: Negotiation over tasks in hybrid human-agent
teams for simulation-based training. In: AAMAS-03, Melbourne (2003)


