
Independent Component Analysis and Raman 
Microspectroscopy on Paraffinised Non Dewaxed 

Cutaneous Biopsies: A promising Methodology for 
Melanoma Early Diagnosis 

Cyril Gobinet1, Ali Tfayli2, Olivier Piot2, Valeriu Vrabie1 and Régis Huez1 

1 CReSTIC, URCA, Campus du Moulin de la Housse, 
B.P. 1039, 51687 Reims Cedex 2, France 

 Unité MéDIAN, CNRS UMR 6142, URCA, 51 rue Cognacq Jay 
 51096 Reims Cedex, France 

Abstract. This paper deals with a promising methodology for melanoma early 
diagnosis. Raman spectroscopy is used to record vibrational information of 
paraffinised tumoral tissues. Independent Component Analysis (ICA) is 
performed on Raman spectra to numerically deparaffinise spectra. Resulting 
deparaffinised spectra are used to extract discriminant information specific to 
malignant and benign tumors. These spectral specificities can be employed as 
molecular descriptors of the type of pathology. A comparison with Principal 
Component Analysis (PCA) shows that ICA is more suited to process this kind 
of problem. 

1   Introduction 

Cutaneous melanoma is the most severe form of skin cancers and accounts for three-
quarters of skin cancer deaths. Clinical diagnosis of malignant melanoma is difficult 
due to its similarity to atypical benign nevi. Therefore new and efficient non-invasive 
tools for early diagnosis of melanomas present a crucial interest in clinical practice. 

Since few years, several studies have reported the potential of vibrational 
spectroscopies to characterise and to differentiate cancerous from normal tissues. 
Raman imaging has been often used due to the fact that Raman spectra provide useful 
information about molecular composition of biological structures.  

The paraffin embedding process enables to conserve biopsies for several years. 
However the use of paraffinised tissues for spectroscopical investigations remains 
very restricted. This is due to energetic Raman peaks of paraffin that mask important 
vibrational bands of the tissues in recorded spectra. Few works are related to the 
analysis of paraffinised tissues, but they led on chemically dewaxed and rehydrated 
tissues [1–2], a procedure that may induce alterations in the tissue structure, and 
which is time and chemical reagents consuming. 

Recently Tfayli et al. [3] have successfully used the FTIR to discriminate between 
nevi and melanomas on paraffinised non dewaxed skin sections. The discrimination 
was based on narrow vibrational bands where the paraffin has no contribution. 
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In this work we propose first to numerically deparaffinise the Raman spectra by 
using the Independent Component Analysis (ICA). Second, we show the possibility to 
extract discriminant sources specific to malignant and benign tumours, sources that 
can be employed as molecular descriptors of the type of pathology. We also show that 
ICA is a more efficient technique than the commonly used Principal Component 
Analysis (PCA) for this kind of treatment. 

2   Data acquisition and properties 

Tissue sections of 10µm thick were cut from paraffin embedded biopsies 
(Dermatology department of Reims university Hospital). Sections were fixed on CaF2 
slides suitable for Raman analysis. Spectral images were collected by a Labram 
spectrometer (Dilor-Jobin Yvon, Lille, France) in a point by point mode with a 10 µm 
step. The light source was a titanium-sapphire laser exciting at 785 nm. In each point, 
the spectrum was recorded at 1305 wavenumbers covering a spectral region from 200 
to 1800 cm-1 with a resolution of 1.22 cm-1. 

Due to the fact that most nevi and melanomas affect the skin epidermis in their first 
step of development, the analysis of each tissue is based on the processing of datasets 
composed of Raman spectra from the skin epidermis. The malignant melanoma and 
benign nevus datasets contain respectively 152 and 119 spectra. Few recorded Raman 
spectra are shown on figure 1.  
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Fig. 1. Examples of recorded Raman spectra from (1) melanoma and (2) nevus. Peaks labeled 
by (*) are associated to the CaF2 medium and by (+) to paraffin. The visible part of the keratin 
spectrum is labeled by (#). 

 

The analysis of these Raman spectra suggests three remarks: 
− whatever is the kind of analyzed tissue, paraffin and CaF2 spectra exhibit thin 

energetic peaks, which are the predominant features of the recorded spectra; the 
contribution of keratin and melanin, which are known to be Raman active species, 
is not visible in the recorded spectra; 

− recorded spectra are polluted by a so-called background or baseline that originates 
from the skin fluorescence; 

− due to the spectral resolution of the spectrometer, the thin energetic Raman peaks 
of paraffin and CaF2 are not aligned on the same wavenumber from a recorded 
spectrum to another; source separation techniques as PCA or ICA will fail to 

20



estimate spectra of pure chemical components by computing several neighboring 
peaks dispatched in different sources. 
Without further processing of data, no information of skin compounds can be 

extracted. We are thus investigated methods to extract information related to these 
species by examination of statistical and physical characteristics of the dataset. 

The first and obvious feature is the instantaneousness data recording because the 
scattered light is collected by CCD detectors. Physical laws governing Raman 
spectroscopy mechanisms are well known to be linear. Recorded spectra thus result 
from a weighted sum of spectra of pure species present in the analyzed tissues. This 
instantaneous and linear model is: 
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where X is the data matrix, S is the pure species spectra or sources matrix, and A is 
the mixing matrix. Each element aij of A represents the concentration of the jth pure 
species sj (which is the jth line of S) into the ith recorded spectrum. The model can 
furthermore be written as a sum, as shows the right member of equation (1). The jth 
column of A, noted aj, represents the concentration profile of the jth pure species. M 
denotes the number of sources of the model. 

Spectra of the CaF2 medium, paraffin and melanin are well known to be sparse and 
to possess few peaks localized in narrow bands. Peaks of one of these three species 
are not overlapped with peaks of the other species. Mutual independence between 
these pure spectra is thus a verified assumption. The keratin spectrum is not sparse 
and has not narrow peaks, but its smooth shape makes it to be independent of the 
other compounds spectra.  

All conditions are combined to apply source separation techniques to the datasets.  

3   Methods 

To overcome previously cited problems, we propose to process data by a three step 
procedure. 

The first step consists in suppressing the background. For each recorded spectrum, 
it is estimated by a five order polynomial. An asymmetric truncated quadratic cost 
function studied by Mazet in [4] is used to estimate the polynomial coefficients. The 
processed spectra are obtained by subtracting the corresponding baseline from each 
recorded spectrum. An example is given on figure 2.  

The alignment of CaF2 and paraffin peaks is realized in the second step. This part 
consists in upsampling spectra in spectral bands where a peak is localized, in 
computing the shift between a reference spectra peak (commonly the first spectrum 
recorded on each tissue) and the other spectra peaks, in shifting back the peaks in 
order to align their maximums, and finally in downsampling spectra. This alignment 
is commonly encountered in geophysical signal processing [5].  

The last step corresponds to the elimination of CaF2 and paraffin influence. Two 
different approaches are possible, the Principal Component Analysis (PCA) and 
Independent Component Analysis (ICA). The use of PCA is motivated by its common 
application to biological and biophysical datasets [2]. PCA is searching for 
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statistically decorrelated sources (pure species spectra) that respect the linear model 
described above. The decorrelation is only a second order independence, so estimated 
spectra may be a linear combination of pure species spectra. In ICA methods [6, 7], 
the decorrelation assumption is replaced by the statistical independence of unknown 
sources (Raman pure species spectra in our case). This hypothesis is in respect with 
the pure species spectra characteristics mentioned in section 2. The JADE algorithm 
[7] was used here to estimate the components model. ICA has proved its efficacy to a 
wide class of applications [8]. Note that, as usual, application of PCA or ICA is 
preceded by centering of data. 
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Fig. 2. Background removal from a recorded spectrum: (1) estimation of the baseline by a 
polynomial of order 5 (dashed line) from a recorded spectrum (solid line); (2) removal of the 
baseline by subtraction 

4   Results and discussion 

4.1   PCA 

After the alignment and centering steps, PCA is applied to datasets. The two first 
principal components are depicted on figure 3.  
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Fig. 3. The two first principal components estimated on benign nevus 

Even if the study of the principal components may lead to discrimination between 
tissues, pure species spectra are not well identified. Paraffin and CaF2 spectra cannot 
be exactly subtracting. It is shown that the first estimated spectrum at the left of the 
figure has its peaks well oriented. The second one at the right of the figure exhibits 
peaks oriented to opposite directions. This is physically unrealistic. Moreover, 
concentration profiles of these principal components exhibit negative and positive 
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values. To feat to reality, only totally positive concentrations are admitted. Moreover, 
the spectra estimated by PCA are still linear combinations of pure species spectra as 
can be observed in figure 3 where influence of CaF2 and paraffin are mixed. 

4.2   ICA – 3 components 

This incorrect estimation motivates the use of ICA. The JADE algorithm [7] was used 
to estimate for each kind of tissue a three components model predicted by the PCA 
analysis. Estimated pure species spectra, corresponding to sources, are depicted on 
figure 4 for a nevus.  
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Fig. 4. Independent components estimated by a three sources model on the benign nevus 

Identical results are obtained for a melanoma. The first source is associated to a 
part of the paraffin spectrum. The second source corresponds to another spectral band 
characteristic of the paraffin spectrum. The third source is the spectrum of the CaF2 
medium. A first conclusion is that paraffin acts differently with the underlying tissue 
in function of the considered spectral band. A second conclusion is that paraffin and 
CaF2 spectra are too much energetic compared to keratin or melanin spectra. These 
two remarks suggest decomposing spectra with more than three sources. The number 
of sources must be sufficient to decompose paraffin in independent behavioral 
spectral bands and to estimate the poorly energetic keratin and melanin spectra.  

4.3   ICA – 5 components 

A four components ICA model lets keratin spectrum mixed with a paraffin source. A 
five components model leads to a well decomposition of paraffin (three sources) and 
keratin (one source). Nevus estimated independent components are shown on figure 5. 
Similar results are obtained for the melanoma. Only the keratin source differs from 
one tissue to another. Sources variance is fixed to unity. Paraffin spectrum has been 
decomposed in three independent spectral bands. As in the model with three sources, 
the CaF2 medium conserves its unique Raman peak spectrum. The last source is 
similar to the known spectrum of keratin. 

Remark 1. Melanin is a priori supposed to be a Raman active species, but its 
spectrum is hidden by spectra of paraffin and CaF2. Even if the number of 
independent components is increasing, no matching with this spectrum was found. 

Remark 2. The accuracy of spectral decomposition by ICA is demonstrated thanks 
to the positivity of the estimated mixing matrix. Furthermore concentrations maps can 
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be organized to show each species repartition in tissue. 
The decomposition in several sources of paraffin spectrum does not handicap the 

interpretation of results because paraffin is considered as a polluting component in 
this application. The interesting information is the keratin spectrum.  
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Fig. 5. Independent components estimated by a five sources model on the benign nevus. (a), (b) 
and (c) independent components associated to paraffin. (d) independent component associated 
to CaF2. (e) independent component associated to keratin 
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Fig. 6. Decomposition of initial data space into a noise subspace and a signal subspace. (1) A 
recorded spectra lying in the data space. (2) Its noise part lying in the noise subspace. (3) Its 
signal part lying in the signal subspace. 

4.4   Subspace representation 

To illustrate the efficacy of numerical deparaffining, let us consider that original data 
can be decomposed in two subspaces. The first one is called the noise subspace and is 
composed by uninteresting information, e.g. paraffin and CaF2 spectra. The second 
one, made up by the keratin spectrum, is the signal subspace. It contains useful 
information to discriminate the kind of tissue. The original data matrix X can be 
written as the sum of the noise subspace Xb and the signal subspace Xs: 
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X = Xb + Xs . (2) 

Each subspace is defined by: 

22332211 CaFCaFparaparaparaparaparaparab sasasasaX +++=  

kerakeras saX = . 
(3) 

To understand these concepts of noise and signal subspaces, let us illustrate by an 
example. A spectrum of the nevus is shown on the left of figure 6. Thanks to ICA, it 
is decomposable in two spectra. The one at the middle of the figure is lying in the 
noise subspace, while the second at the right in the signal subspace. Note that this last 
one is just a scaled version of the spectrum of keratin in figure 5(e). We can notice 
that the signal subspace is not very energetic compared to the noise subspace. 
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Fig. 7. Keratine spectrum estimated on a benign nevus (solid line) and on a malignant 
melanoma (dashed-dotted line) 

4.5   Keratin spectrum discrimination 

A comparison of keratin spectra estimated for a malignant melanoma and a benign 
nevus can be done, as shown on figure 7. The sources obtained from ICA show 
visible differences between nevi and melanomas. Such differences are visualised with 
the changing intensity ratio of the Fermi doublet bands on 850 cm-1and 830 cm-1 for 
melanomas it is around 2.5 while it is only 1.6 for the nevi. Such changes could 
inform us about the state of the phenylic cycle in the tyrosine residu and the type of 
resulting molecular bands (intra- or inter-). 

Secondary structure variations are marked by a predominance, in the melanoma 
source, of the α helix vibrations (1650cm-1) in the amide I band. Similar information 
can be obtained from the high intensity of the band on 934 cm-1 characterising the C-
C stretch in the α helix. On the other hand, the nevi source represents a shoulder band 
at 1670 cm-1 revealing a more important contribution of the β sheet conformation. 

The differences in the secondary structure can be quantified by the decomposition 
of the amide I band by creating spectral models with Gaussian-Loretzian functions. 
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The same information can be obtained from the changes of the amide III band, and 
from the intensity of the band on 901 cm-1. 

5   Conclusion 

When a skin sample is paraffinised, the direct analysis of recorded Raman spectra is 
not possible because of the predominant intensity of paraffin spectrum over the other 
compounds spectra. Thanks to the mutual independence of spectra of these species, 
ICA is applicable and estimates physically meaningful sources. 

A first conclusion is that paraffin spectrum can be decomposed in three 
independent behavioural spectral bands. It means that the underlying tissue is more or 
less reacting with some spectral bands of the paraffin spectrum. A second is that 
melanin spectrum is not visible when paraffinised tissues are considered because of 
the too energetic peaks of paraffin and CaF2.  Third, more sources than suggested by 
PCA must be employed in order to reveal the low energetic spectrum of keratin. 

The last and important conclusion is that estimated keratin spectra of paraffinised 
benign nevus and malignant melanoma contain a large amount of information. Little 
spectral differences between these spectra lead to the identification of the kind of 
analysed tissue. Molecular descriptors of the type of pathology have been found. 
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