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Abstract. Built upon a recently developed theoretical framework, we consider
some practical issues raised in multi-agent formation control in three dimensional
space. We introduce the partial equilibrium problem, which is associated with
unsafe control of a formation in practical 3-dimensional applications. We define
structurally persistentgraphs, a class of persistent graphs free of any partial equi-
librium problem. In real deployment of control of multi-agent systems, forma-
tions with underlying structurally persistent graphs are of interest. We study the
connections between the allocation of degrees of freedom (DOFs) across agents
and the characteristics of persistence and/or structural persistence of a directed
graph. We also show how to transfer degrees of freedom between agents, when
the formation changes with new agent(s) added, to preserve persistence and/or
structural persistence.

1 Introduction

In [1], we have generalized the definition of persistence toℜd for d ≥ 3, seeking
to provide a theoretical framework for real world applications, which often are in 3-
dimensional space as opposed to the plane. We also have derived some new properties of
persistent graphs and given an operational criterion to determine if a graph is persistent.
In this paper, we demonstrate that a persistent formation, as defined in [1], may also
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suffer from a practical problem where each agent can move to aposition which satisfies
the constraints on it once all the other agents are fixed but itis not possible to satisfy all
the constraints on all the agents at the same time.

In Section 2, we formally characterize the above problem, which we call the partial
equilibrium problem, and which is closely associated with unsafe control of a forma-
tion in practical 3-dimensional applications. We then introduce the definition of astruc-
turally persistentgraph, a class of persistent graphs free of any partial equilibrium prob-
lem. In real deployment of control of multi-agent system, formations with underlying
structurally persistent graphs are of interest. It is established in Secction 2 incidentally
that in two dimensions, structural persistence and persistence are equivalent.

In Section 3, we focus on the connections between allocationof degrees of freedom
(DOFs) across agents and the characteristics of persistence and/or structural persistence
of a directed graph. We also show how to transfer degrees of freedom between agents,
when the formation changes with new agent(s) added, to preserve persistence and/or
structural persistence. We studycycle-freegraphs inℜ3 and show some more powerful
results that exist in this special case, such as the existence of a quadratic time criterion to
verify the cycle-free property and to decide persistence, which automatically guarantees
structural persistence.

We end the paper with concluding remarks in Section 4. Note that all the proofs are
omitted due to space limitations. However, a full version ofthis work together with the
campanion paper [1] is available in preprint from the authors.

2 Partial Equilibrium Problem and Structurally Persistent
Graphs

Consider a persistent graphG = (V,E) in ℜd (d ∈ {2, 3, . . .}). Thepartial equilibrium
problemwe want to avoid is the following: There is a subsetṼ ⊂ V of vertices such
that all the vertices iñV are at fitting positions whatever the positions of the vertices
in V \Ṽ are, but there exists no position assignment for the vertices in V \Ṽ such that
the whole representation is fitting. For example, consider the 3-dimensional persistent
graphḠ shown in Figure 1, an associated setd̄ of desired lengthsdij > 0 for all the

edges
−−→
(i, j), and a realization̄p of d̄ in agreement with Figure 1. IdentifỹV with {1, 2}.

Since the vertices 1 and 2 have zero out-degrees, they are at fitting positions for any
representation of the graph, whatever the positions of 3, 4,5 are. However, there are
representations of̄G arbitrarily close top̄ where the vertices 3, 4, and 5 cannot be at
fitting positions at the same time. From the perspective of formations, in the formation
represented bȳG, there exist two leaders, 1 and 2, which are allowed to move freely in
ℜ3 without any constraint. This freedom, however, makes it impossible in some cases
for the agents 3, 4, and 5 to meet all the distance constraintson them, although̄G is
persistent, according to the definition given in Section 3 of[1]. In such a case, we will
say thatḠ is in partial equilibrium.

The existence of suchpartial equilibrium problemsin three and higher dimensional
spaces makes it necessary to analyse persistent graphs further and introduce new con-
cepts such as structural persistence that will be defined in this section. Inℜ2, how-
ever, there is no persistent graph suffering frompartial equilibrium problems, as ex-
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Fig. 1.A persistent graph inℜ3 which is not structurally persistent.

plained later in Theorem 1. Let us consider a persistent graph G = (V,E) in ℜd

(d ∈ {2, 3, . . .}) with a representationp. Let d̄ be the set of distances corresponding
to p. G is in partial equilibrium, and thus has thepartial equilibrium problemif there
exists a non-empty vertex subsetṼ ⊂ V , a constantε > 0 and a mappingpε̄ indexed

by ε̄,
{

pε̄ : Ṽ → ℜd |0 < ε̄ ≤ ε
}

such that for anȳε ≤ ε the following hold:

1. d(p(i), pε̄(i)) ≤ ε̄, ∀i ∈ Ṽ .
2. For alli ∈ Ṽ , pε̄(i) is a fitting position with respect tōd, irrespective of the posi-

tions of the vertices inV \Ṽ .

3. There exist no fitting representationp′ : V → ℜd in B(p, ε̄)
∆
=

{

p̄ : V → ℜd |d(p, p̄) ≤ ε̄
}

,
with respect tod̄, such thatp′(i) = pε̄(i), ∀i ∈ Ṽ .

If a persistent graph is not in partial equilibrium, it is called astructurally persistent
graph. To analyse this concept further, it is defined that fora given directed graphG =
(V,E), a subgraphG′ = (V ′, E′) is apractically closed subgraphof G if for any vertex
i ∈ V ′, d+

G′(i) ≥ min{d, d+

G(i)}, whered+

G′(i) denotes the number of outgoing edges
incident to the vertexi of a graphG′. We remark that a closed subgraph is always a
practically closed subgraph, since each vertex of it satisfies the criterion defined above.

In the 2-dimensional example shown in Figure 2, whereV ′ = {1, 2, 3}, G′ is a
practically closed subgraph ofG but not a closed subgraph ofG. All the outgoing edges
of 1 and 2 inG remain in the subgraphG′. Vertex 3, on the other hand, has two outgoing
edges inG′ (makingG′ a practically closed subgraph) and another one not inG′. From
a perspective of formations where vertices denote agents and edges denote awareness,
in G, although 3 is aware of 4, it may not be able to react to correctly maintain its
distance from 4 because its position is locked by the constraints with respect to the
vertices 1 and 2.

The relation between partial equilibrium problems and practically closed subgraphs
is examined in the following propositions.

Proposition 1 Consider a persistent graphG = (V,E) in ℜd (d ∈ {2, 3, . . .}) with a
representationp and a setd̄ of distances corresponding top. Let G′ = (V ′, E′) be a
subgraph ofG whereV ′ is a non-empty vertex subset ofV . Then,G′ is a practically
closed subgraph ofG if and only if there exist a constantε > 0 and a mappingpε̄

indexed bȳε,
{

pε̄ : V ′ → ℜd |0 < ε̄ ≤ ε , pε̄ is the restriction of p → V ′
}

such that
for any ε̄ ≤ ε the following hold:
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Fig. 2.A practically closed subgraph inℜ2.

1. d(p(i),pε̄(i)) ≤ ε̄, ∀i ∈ V ′, for all pε̄ in the mapping set.
2. For all i ∈ V ′, pε̄(i) is a fitting position with respect tōd, irrespective of the

positions of the vertices inV \V ′.

Proposition 2 Consider a persistent graphG = (V,E) in ℜd (d ∈ {2, 3, . . .}) with a
representationp and a set̄d of distances corresponding top. G is structurally persistent
if and only if every non-empty practically closed subgraph of G is persistent.

The following theorem, which uses Proposition 2, states that there is no partial
equilibrium problem inℜ2, as mentioned in the beginning of the section.

Theorem 1 Any persistent graphG ∈ ℜ2 is structurally persistent and has all its
practically closed subgraphs persistent.

Proposition 2 states that a graph is not structurally persistent if and only if it contains
a practically closed subgraph that is not persistent. Development of this notion leads to
the following proposition, which gives another necessary and sufficient condition for a
persistent graph to be structurally persistent.

Proposition 3 LetG = (V,E) be a persistent graph inℜd. G is structurally persistent
if and only if there is no non-persistent closed subgraph ofG with less thand vertices.

The following corollary, which is a major result of the section, and which immedi-
ately follows from Proposition 3, gives a more explicit necessary and sufficient condi-
tion for 3-dimensionalpersistent graphs to be structurally persistent. It also gives more
insight for the problem encountered in the example in Figure1.

Corollary 1 A persistent graphG = (V,E) in ℜ3 is structurally persistent if and only
if there is at most one leader3 in G.

Remark 1 For some dimensionsd > 3, one can have a non-persistent closed subgraph
with less thand vertices in a graph that has only one leader. An example inℜ6 is shown
in Figure 3. In general, in a givend-dimensional persistent graph, the presence of a
non-persistent closed subgraph can be checked by looking only at the vertices with out-
degree less thand − 1, which are finite in number because of the bound on the total
DOF count.
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Fig. 3. A non-persistent closed subgraph inℜ6 that does not have two leaders. Note that inℜ
6,

the total DOF count of a persistent graph can be up to 21.

Remark 2 In contrast to the cased = 3, for d ≥ 4, a non-persistent closed subgraph of
a persistent graph can be connected. Consider, for example,the 4-dimensional directed
graphG = (V,E) shown in Figure 4.G is constraint consistent because no vertex has
an out-degree larger than 4. Moreover, it is minimally rigidand it can be obtained by
removing an edge from the complete graphK6, which is trivially rigid. On the other
hand, the closed subgraphG2 of G is non-rigid and hence non-persistent. Therefore,G

is not structurally persistent. Note thatG2 is connected although it is non-persistent.
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Fig. 4.A 4-dimensional persistent graph with a non-persistent and connectedclosed subgraph.

3 Allocation of DOFs in ℜ3 and Trilateration

In Section 2, we have seen that for a directed graph, persistence is not enough to avoid
partial equilibrium problems. In the following subsections, we study how the way de-
grees of freedom happen to be allocated to the vertices of a directed graph is a key de-
terminant of the structural persistence or otherwise of that graph. In an application sce-
nario, this corresponds to giving/restricting the autonomy of certain agents (abstracted
as degrees of freedom of vertices) of the formation [2].

3 An agent is a leader if it has no constraints on its movement, e.g. in Figure 1, both agents
represented by vertices 1 and 2 are leaders. In associated graphs, corresponding vertices have
no outgoing edges.



3.1 DOF Allocation and Transfer via Directed Trilateration in ℜ3

In this section, we study the properties of the directed version of Henneberg-like vertex
addition in 3 and higher dimensions, which is an abstractionof the event that new
agents join a formation, one at a time. We give examples of applying such operations to
manipulate DOF allocation of persistent graphs, in particular, inℜ3.

Let us consider a persistent graphG = (V,E) in ℜd (d ∈ {2, 3, . . .}) where|V | ≥
d. A directedd-vertex addition, DVA (d, n) wheren ∈ {0, . . ., d}, transformsG to
another persistent graphG′ = (V ′, E′) whereV ′ = V ∪ { i }, E′ = E ∪ {

−−−→
(i, k) :

∀k ∈ V1 } ∪
−−→
(j, i) : ∀j ∈ V2 }, V1, V2 ⊆ V , V1 ∩ V2 = ∅, |V1| = d − n , |V2| = n

, andDOF (j) ≥ 1 ,∀j ∈ V2,4 provided that the vertices ofV1 ∪ V2 do not lie in any
q-dimensional hyperplane whereq < d.

We note that from Lemma 2 of [1], constraint consistency is preserved with the
directedd-vertex addition defined above. Moreover, from the following lemma which
is drawn from [3, 4], we see that the rigidity is also preserved.

Lemma 1 [3, 4] A graph obtained by adding one vertex to a graph G = (V, E)in ℜd

and d edges from this vertex to other vertices of G is rigid if and only if G is rigid.

Hence by Theorem 2 of [1], the graph obtained after applying adirectedd-vertex
addition on a persistent graph inℜd is persistent, i.e., thed-directed vertex addition
defined above preserves the persistence of the graphs.

Remark 3 Consider a persistent graph G = (V, E) inℜd. Let G’ = (V’, E’) be the graph
obtained by applying the operation DVA(d,n) to G, where V’=V∪ {i}. Then we have:
DOFG′(i) = n ; DOFG′(j) ≤ DOFG(j),∀j ∈ V. andDOFG(j) − DOFG′(j) ∈
{0, 1} ,∀j ∈ V.

In the remaining part of this section, we only considerℜ3, although results can
be easily expanded to higher dimensions. As a more convenient nomenclature inℜ3,
we use the termdirected trilaterationoperation, abbreviated DT(·), DT(n) in place of
directed 3-vertex addition or DVA(3, n).

An undirected graph formed by a sequence of trilateration operations starting with
an initial undirected triangle, often called atrilateration graph, is guaranteed to be
generically rigid inℜ3 and globally rigid inℜ2. A trilateration graph can always be con-
structed/deconstructed using a polynomial time algorithm, where a reverse trilateration
can be performed by removing a vertex with degree 3 at each step. Note that a seed with
3 vertices is needed to initiate a trilateration sequence. However, two differentdirected
triangular seedscan start a directed trilateration operation inℜ3 as defined in Figure
5(a) and Figure 5(b) are called theleader-first follower-second follower(L−FF −SF )
and thebalanced triangle(B1B2B3) seeds, respectively.

Remark 4 The leader-first follower-second follower seed is analogous to the leader-
follower structure defined for a 2-dimensional cycle-free graph [5]. The set of DOF
counts of the seed vertices is{3 ,2 ,1}. The balanced triangle is nothing more than a
directed triangle (cycle) in a cyclic graph and the corresponding DOF count set is{2
,2 ,2}.

4 Non-existence ofV2 means the corresponding DVA(n) cannot be performed for the graph.
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Fig. 5.The two directed triangular seeds.

Specifically in the application to 3 dimensional agent formations, note the meanings
of the DT(i) operation for differenti can be interpreted as follows,

– DT(3) means election of a new leader.
– DT(2) may result in either breaking/restoring the balancedcontrol structure, or

election of a new first-follower.
– DT(1) may also result in either breaking/restoring the balanced control structure at

more a detailed level, or creation/change of second follower.
– DT(0) preserves the control structure and no decision has tobe made by pre-

existing agents.

Noting that in a 3-dimensional persistent graph, there are at most 6 DOFs (as op-
posite to 3 DOFs in theℜ2 case) to be allocated among the vertices, we can list the
following six types of DOF allocation(abbreviated DOF allocation stateS1 to S6 with
DOF counts of vertices):

– S1 = {3, 2, 1, 0, 0,. . .} , S2 = {2, 2, 2, 0, 0,. . .}
– S3 = {3, 1, 1, 1, 0, 0,. . .} , S4 = {2, 2, 1, 1, 0, 0,. . .}
– S5 = {2, 1, 1, 1, 1, 0, 0,. . .} , S6 = {1, 1, 1, 1, 1, 1, 0, 0,. . .}

Further, we define a transient type of DOF assignmentS0 = { 3, 3, 0, 0,. . .}, which
can (only) be obtained by applying a DT(3) operation toS3. S0 is named “transient”
because it apparently allows two leaders simultaneously incontrol of a formation, and
hence this creates instability and we want the DOF assignment to avoid this state. Recall
that the underlying directed graph of such a formation is a persistent graph with a partial
equilibrium problem, i.e. it is persistent but NOT structurally persistent (An example of
a graph that is in transient stateS0 can be seen from Figure 1).

We study the transformational relationship between the possible distribution of
DOFs by applying the appropriate DT(·) operation using the “state transition diagram”
shown in Figure 6. We have the following observations:

– Starting from any one of the two directed triangular seeds, we can build any graph
with any ofS0 - S6 by adding at most three vertices using directed trilateration.

– Any desired DOF reallocation pattern(with no allocation toa specific vertex) can
be achieved by at most four directed trilaterations starting with any of the six types
of DOF allocation.

– Any desired stable DOF reallocation pattern can be achievedby at most three di-
rected trilaterations starting with any stable DOF allocation.
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Fig. 6.The state transition diagram for directed trilaterations.

The observed results above gives an upper bound on the numberof agents required
in order to perform a system reconfiguration operation, suchas replacement or elimina-
tion of leaders/first-follower/second-follower, or change to balanced cooperative control
of 3 leaders. And it also gives the possible consequences in aclosing ranks problem5,
where the lost agent has a certain positive number of DOFs .

3.2 Cycle-Free Graphs

Persistence of cycle-free graphs inℜ2 was studied in [5]. In this section, we derive a
simple criterion to decide the persistence and structural persistence of cycle-free graphs
in ℜd. We also show an explicit way to build all the persistent cycle-free graphs.

Proposition 4 A graph obtained by adding one vertex to a graph G = (V, E) inℜd and
at least d edges leaving this vertex is persistent if and onlyif G is persistent.

We thus know that a cycle-free graph obtained by successively adding vertices all
with out-degreed, i.e. DVA(d,0), to an initial seed of a cycle-free persistent graph con-
taining onlyd vertices is persistent.

Next,we focus on cycle-free persistent graphs inℜ3, which have important applica-
tion in safe control of multi-agent formations.

5 The closing ranks problem for a given rigid formation which has lost a single agent, is to
find new links between some agent pairs which, if maintained cause the resulting formation to
again be rigid.



Theorem 2 A cycle-free graph inℜ3 having more than 2 vertices is persistent if and
only if it has a closed subgraph which is the leader-first follower-second follower trian-
gle, and every other vertex has an out-degree larger than or equal to 3.

Moreover, every cycle-free persistent graph inℜ3 can be obtained from an original
seed composed by the leader-first follower-second followerby adding vertices one by
one in the way described in Proposition 4, i.e., each vertex is added with every incident
edge outwardly directed.

We can also progressively deconstruct the cycle-free (persistent) graph by recur-
sively removing one vertex at a time, where that vertex has atleast 3 outgoing edges
until we obtain the leader-first follower-second follower triangle. We conclude from
these observations that the computational complexity of verifying both persistence and
cycle-free properties of 3-dimensional graphs is quadratic in the number of vertices. In
other word, if the deconstruction process cannot proceed for the graph, then the graph
we are dealing with is not a persistent cycle-free graph. Note the cycle-free property
allows only one leader in the graph, thus following Corollary 1, we have

Proposition 5 All cycle-free persistent graph inℜ3 are also structurally persistent.

4 Conclusion and Further Works

In this paper, we considered some practical issues raised inmulti-agent formation con-
trol in three dimensional space, building upon a recently developed theoretical frame-
work. We introduced the partial equilibrium problem. We definedstructurally persistent
graphs, a class of persistent graphs free of any partial equilibrium problem, noting that
for d = 2, structural persistence is no different to persistence. Westudied the connec-
tions between the allocation of degrees of freedom (DOFs) across agents and the char-
acteristics of persistence and/or structural persistenceof a directed graph. We proposed
directed d-vertex additionoperations forℜd. We also showed how to reallocate degrees
of freedom between agents, when the formation changes with new agent(s) added, to
preserve persistence and/or structural persistence. Finally, we gave some powerful re-
sults about cycle-free persistent graphs inℜ3.
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