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Abstract. The idea of evolving artificial networks by evolutionary algorithms is 
based on a powerful metaphor: the evolution of the human brain. The 
application of evolutionary algorithms to neural network optimization is an 
active field of study. The success and speed of training of neural network is 
based on the initial parameter settings, such as architecture, initial weights, 
learning rates, and others. A lot of research is being done on how to find the 
optimal network architecture and parameter settings given the problem it has to 
learn. One possible solution is use of evolutionary algorithms to neural network 
optimization systems. We can distinguish two separate issues for it: on the one 
hand weight training, and on the other hand architecture optimization. Next, we 
will focus on the architecture optimization and especially on the comparison of 
different strategies of neural network architecture encoding for the purchase of 
the evolutionary algorithm. 

1   Genetic background for network topology optimization 

The typical network considered here is a directed acyclic graph of simple neurons or 
units. Each unit has a state, represented by a real number, a set of input connections, 
and a set of output connections to other units. The connections themselves have real-
valued weights, wij.  A unit’s state, oi is computed as a nonlinear function of the 
weighted sum of the states of units from which it receives inputs. The nonlinear 
activation function is a sigmoid, effectively endowing the unit with a threshold action; 
the position of the threshold is controlled with a bias or „threshold weight“, qi. This is 
summarized in equations: 

1

1

)1( −−

=

+=

+= ∑
is

i

n

j
ijiji

eo

ows θ
. 

 

(1) 

A subset of the units is designated as input units. These units have no input 
connections from other units; their states are fixed by the problem. Another subset of 
units is designated as output units; the states of these units are considered the result of 
the computation. Units that are neither input nor output are known as hidden units. 
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A problem will specify a training set of associated pairs of vectors for the input units 
and output units. 

The full specification of a network to solve a given problem involves enumerating 
all units, the connections between them, and setting the weights on those connections. 
The first two tasks are commonly solved in an ad hoc or heuristic manner, while the 
final task is usually accomplished with the aid of a learning algorithm, such as 
backpropagation. Backpropagation [3], [5] is a supervised learning technique that 
performs gradient descent on a quadratic error measure to modify connection weights. 
A network begins with small random weights on its connections and is trained by 
comparing its response to each stimulus in the training set with the correct one and 
altering weights accordingly. The learning algorithm introduces new design variables, 
such as the parameters to control rate of descent. 
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Fig. 1. A population of „blueprints“ designs for different neural networks - is cyclically 
updated by the genetic algorithm based on their fitness scores. Fitness is estimated by 
instantiating each blueprint into an actual neural network, training, and then testing the network 
on the given task. 

We use the genetic algorithm [2], [4] to search a space of possible neural network 
architectures. In most of these experiences, the system begins with a population of 
randomly generated networks. The structure of each network is described by a 
chromosome or genetic blueprint - a collection of genes that determine the anatomical 
proprieties of the network structure and the parameter values of the learning 
algorithm. We use backpropagation to train each of these networks to solve the 
problem and then evaluate the fitness of each network in a population. We define 
fitness to be a combined measure of worth on the problem, which may take into 
account learning speed, accuracy, and cost factors such as the size and complexity of 
the network. Network blueprints from a given generation beget offspring according to 
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a reproductive plan that takes into consideration the relative fitness of individuals. In 
this respect, application of the genetic algorithm is little different from any other 
function optimalization application. A network spawned in this fashion will tend to 
contain some attributes from both of its parents. A new network may also be a mutant, 
differing in a few randomly selected genes from a parent. Novel features may arise in 
either case: through synergy between the attributes of parents or through serendipitous 
mutation. The basic cycle is illustrated in Figure 1 [2]. This process of training 
individual networks, measuring their fitness, and applying genetic operators to 
produce a new population of networks is repeated over many generations. If all goes 
well, each generation will tend to contain more of the features that were found useful 
in the previous generation. 

2   Encoding strategies for neural network topology 

We address two major shortcomings of this heuristic approach here. First, the space 
of possible artificial neural network architectures is extremely large and most of 
applications are unexplored. Second, what constitutes a good architecture is 
dependent on the application. Both the problem that is to be solved and the constraints 
on the neural network solution need to be considered, but at present we have no 
techniques or methods for doing so. Optimal architecture is necessary achieved by 
amount of manual trial-and-error experimentation. The problem of optimising neural 
network structure for a given set of performance criteria is a complicated one. There 
are many variables, both discrete and continuous, and they interact in a complex 
manner. The evaluation of a given design is a noisy affair, since the efficacy of 
training depends on starting conditions that are typically random. In short, the 
problem is a local application for the genetic algorithm that is used to synthesise 
appropriate network structures and values for learning parameters. Thumb rules like: 
“the harder the problem the more units you need“ are of little practical use to the 
design problem. It is known that a neural network with at least one hidden layer can 
approximate every function. Almost always a fully interconnected architecture is 
used. But what is the optimal number of units and their organization into layers? With 
the exception of some simple task (e.g. the XOR-problem) humans cannot foresee the 
optimal network topology.  

Such complex spaces cannot be explored efficiently be enumerative, random or 
even heuristic knowledge-guided search methods. In contrast, the adaptive features of 
genetic algorithms (building blocks, step-width control by crossover) provide a more 
robust and faster search procedure. Additionally, it is easy to speed-up the genetic 
search by means of parallel processing. 

Before we discuss the differences between several approaches we want to give a 
basic genetic algorithm for topology optimization, which is common to all these 
approaches. It is assumed that two representations of the networks are distinguished: 
A) genotypes, which are modified by the genetic algorithm′s operators (e.g. mutation 
and crossover); B) phenotypes, which are trained by a conventional learning 
procedure (e.g. backpropagation) used for performance evaluation or selection. 
Roughly two basic representation schemes can be distinguished: low-level genotypes 
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and high-level genotypes. While the first one is transparent and easy to use, there are 
two variants of second representation scheme. 

Low-level genotypes. Low-level genotypes directly code the network topology. Each 
unit and each connection is specified separately. In [6] the following classification of 
the encoding strategies of a neural network topology is proposed (the classes are 
roughly ordered to the complexity of the strategies), e.g. direct encoding strategies:  

− Connection-based encoding. The genome is a string of weight values or pure 
connectivity information. The requires a fixed maximal architecture, which is 
typically either fully-connected or layered [7]: 

− Node-based encoding. The genome is a string or tree of node information. The 
code for each node may include relative position, backward connectivity, weight 
values, threshold function and more. An advantage over previous approach is that 
more flexibility can be obtained by using nodes as basic units. The literature [8] 
describe the genetic programming paradigm, which genetically breeds populations 
of computer programs to solve problems, where the individuals in the population 
are hierarchical compositions of functions and arguments of various sizes and 
shapes (i.e. LISP symbolic expressions: S  - expression). 

− Layer-based encoding. With layer-based encoding we can obtain larger networks 
[9]. The encoding scheme is a complicated system of descriptions of connectivity 
between a list of layers. 

− Pathway-based encoding. Pathway-based encoding is proposed in [10], [11] for 
recurrent neural network. The network is viewed as a set of paths from an input to 
an output node. 

High-level genotypes. High-level genotypes are more complex coded representations 
of network architectures. They can be further divided into parametric and recipe 
genotypes. There are the networks splited into modules of units which are specified 
by parameters and which are coupled by parametric connectivity patterns, in 
parametric genotypes. Even through this representation is more compact and thus well 
suited to code large network architectures, it is difficult to choose the relevant 
parametric shapes.  

− The graph generation grammar (GGG) developed by [13] is an early grammar 
encoding method based on context-free and deterministic Lindenmayer systems, 
e.g. L-systems [12]. The grammar contains productions rules in the special form. 

− Nolfi and Parisi in [14] described a method for encoding neural network 
architecture into a genetic string, which is inspired by the characteristics of neural 
development in real animals. The neurons are encoded with coordinates in a two-
dimensional space. The mapping from genes to neurons is direct in a sense, but the 
connections are grooving in a special manner. 

− In [15] are proposed main theoretical advantages of the use of L – systems to code 
network topologies over “blueprint representations” where the evolutionary 
algorithm specifies every single connection in neural networks. They used a 
version of L - systems to grow the networks (e.g. the context-sensitive L - system 
to rewrite neurons and modules of neurons). Here is each neuron/module by 
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default connected to the next adjacent neuron/module, and missing connections are 
denoted by comma. 

− Channon and Damper in [16] investigated evolving of behaviors of artificial life 
creatures with natural selection. They decided to evolve neural networks and they 
used L-systems for encoding of the topology. Precisely, a context-free L - system 
was designed for the evolution of neural networks. Specific attention was paid to 
producing a system in which children’s networks resemble aspects of their parents. 

− In [17] is proposed a method based on L-system that directs neural mass growth 
inspired in biology. Rules are then applied in 2-dimensional cell matrix, instead of 
a string. 

− Gruau´s [18] cellular encoding method uses a grammar tree to encode a cellular 
developmental process to grow neural networks. The decoding starts from a 
network with a single hidden “cell” that is connected all input and output neurons 
of the network. The cell starts reading the grammar tree from its root. The nodes of 
the tree are instructions that control how the cell is divided, etc. The child cells of a 
differentiate by moving their “read-heads” to different branch of the grammar tree. 

Over the last decade many systems have been developed that evolve no only a neural 
network topology but both the topology and the parametric values of a neural network 
[19], [20] etc. 

3   Theoretical basis 

We can choose any combination of the n hidden neurons to flip their weight signs so 
there are (see Formula 2) structurally different but functionally identical networks 
generated by this transformation. 
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Suppose that we have a network with h1 h2... hn as hidden nodes. The mapping 
implemented by the network does not change if a particular hidden node with all its 
incoming and outgoing weights is exchanged with another neuron and its weights. For 
instance the networks h1 h2... hn and h2 h1... hn  are equivalent, even though the first 
and second neuron have changed their position in the hidden layer. Obviously we can 
permute any of the n neurons so the total number of functional equivalent networks 
by this transformation is n!. 

Since the two transformations are independent of each other, there is a total of   
2nn! functional equivalent but structurally different networks. Recently it has also 
been proven that at least in the case of a single hidden layer, one output neuron and a 
tangent hyperbolic transfer function the weights within this group of symmetries is 
unique, so there are exactly  2nn! redundant networks for a specific mapping. 
Suppose a we would tell that h hidden units and l hidden layers are necessary for a 
given problem. Now, we have to distribute the hidden units into these layers. We will 
derive a recursive formula which allows to compute the number of possible partitions 
p(h,l). It is evident that: 
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1. If  l = 1 or  if  h = l then  p(h,l) = 1. 
2. If  h < l  then  p(h,l) = 0,  because empty partitions are not reasonable. 
3. If  h > l we get  p(h,l) = p(h - 1, l -1) + p(h - 1, l). 

By this formula we can compute the number of possible partitions from that number 
of a less complex architecture with h - 1 units. The first term counts the number of 
partitions if the boundary of an additional layer separates the additional unit itself. 
The second term means that the additional unit is placed into the last hidden layer of a 
less complex architecture which has already l layers. 

 

If we have decided for a specific partition we are confronted with the problem of 
optimizing connectivity. For h hidden units the number of possible connections is 
limited by two extreme topologies which are fully interconnected from input layer 
(m units) to output layer (n units): 

− A topology that has as much as possible hidden layers with one hidden unit each. 
We will refer to that topology as TALL. 

− A topology that has just one hidden layer. It forms a look-up table and we will 
refer to it as WIDE. 

While the TALL-architecture contains (see Formula 3) connections, the WIDE-
architecture has only (see Formula 4) connections, but in most practical applications 
neither the TALL - nor the WIDE - architecture will be best suited. Thus, have to find 
a connectivity pattern, which is adapted to a particular task. 

( )C h h h m n m nT =
−

+ ⋅ + + ⋅
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( )C h m n mW = ⋅ + + ⋅n  
 

(4) 

4   Conclusion 

Genetic algorithms are an effective optimisation, search and machine learning 
technique, suitable for a large class of problems, especially for NP-complete state 
space problems, which cannot easily be reduced to close form. Genetic algorithms 
have been applied largely to the problem of training a neural net, as an alternate 
technique to more traditional methods like backpropagation.  
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Neural network adaptation. Neural networks solve XOR problem that is not linearly 
separable and in this case we cannot use neural network without hidden units. Each 
network architecture is 2 - 2 - 1 (e.g. two units in the input layer, two units in the 
hidden layer, and one unit in the output layer). The nets are fully connected. If is the 
XOR problem solved with genetic algorithm (GA), we need the following parameters: 
number of generation was 500, probability of mutation is 0.01 and probability of 
crossover is 0.5. The initial population contains 30 neural networks with randomly 
generated weight values. Every weight value is written in a code as well as in [21]. 
Genetic operators (mutation and crossover) also are defined in [21]. History of the 
average error function of the whole population during calculation is shown in the 
Figure 2. Global search such as genetic algorithms are usually computationally 
expensive to run. If the XOR problem is solved with the method backpropagation 
(BP), we need the following parameters: learning rate is 0.4 and momentum is 0.1. 
History of its error function during whole calculation is shown in the Figure 2. There 
is shown an average value of the error function, because the adaptation with 
backpropagation algorithm was applied 30 during 500 cycles. If the XOR problem is 
solved with a method that combines genetic algorithm and backpropagation, then all 
parameters and genetic operators are the same as stated above. And besides that we 
have to define the following parameters: number of backpropagation´s iterations is 10 
and probability of backpropagation is 0.2. If the input condition of backpropagation is 
fulfilled (e.g. if a randomly number is generated, that is equal to the defined constant), 
all individuals are then adapted with 10 cycles of BP. History of the average error 
function of the whole population during calculation is shown in the Figure 2. 
 

iteratio

Error 

Fig. 2. History error function during calculation, where BP is adaptation with backpropagation, 
GA is adaptation with genetic algorithm, BP+GA is adaptation with method that combines 
genetic algorithm and backpropagation. 

This paper also introduces theoretical proposes of neural network configuration by 
using genetic algorithms [1], [7], [8], [9] etc. In this participation has been done 
simple initial study on neural network optimization by means of evolutionary 
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techniques and given positive results has shoved that evolutionary techniques can be 
used in this way. In the future more complex study on neural network optimization 
are going to be done by means of another evolutionary algorithms. 

Neural network architecture. Neural networks solve XOR problem. The Figure 3 
illustrates the best representation of neural network for the solution of XOR problem 
(a) that was found with genetic algorithm [21] and its following adaptation with 
backpropagation (b). 
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Fig. 3. The best representation of neural network for solution of XOR problem with genetic 
algorithm (a) and its following adaptation with backpropagation (b). 
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