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Abstract:  This paper presents a control method for a medical glove with intelligent actuators for a hand with 
disabilities.  The medical glove has got on outer superior face, an intelligent actuator to every finger, which 
helps it to bend and to grasp different objects and on outer inferior face a force distributed sensor system. 
The dynamic model of the outer superior face finger is determined and an approximate model is proposed. 
The two-level hierarchical control is adopted. The upper level coordinator gathers all the necessary 
information to resolve the distribution force. Then, the lower-level local control problem is treated as an 
open-chain hyper-redundant structure control problem. The fuzzy rules are established and a fuzzy 
controller is proposed. 

1 PHYSIOLOGICAL ASPECTS 
OF HAND FUNCTIONS 

The hand functions as an effector organ of the upper 
extremity for: support, manipulation, prehension. As 
a support, the hand acts in a non-specific manner to 
brace or stabilise an object and, also, as a simple 
platform to transfer or accept forces. 
     The most varied function of the hand is its ability 
to dynamically manipulate objects. Fingers motions 
may be repetitive and blunt (typing or scratching) or 
continuous and fluid with the rate and intensity of 
motion continuous controlled (writing or sewing). 
Prehension describes the ability of the fingers to 
grasp for holding, securing and picking up objects. 
There are many form of prehension: the grip, in 
which all fingers are used, the pinch, in which 
primarily the thumb and index fingers are used, the 
power grip, the precision grip, the power pinch, the 
precision pinch, hook grip and others. 
     For hand prosthesis the prehension is the first 
goal. In this paper we propose a special glove (a 
hand prosthesis) that realises a great help for the 
fingers flexion on their grip tasks to a hand with 

disabilities (the fingers have a great stiffness in their 
actions) while the other hand is a good hand. We 
need to know the proper correspondence between 
fingers actions and the activation of the nerves of the 
hand upper extremity. The nerves responsible for the 
hand motor control are: the radial nerve, the median 
nerve, the ulnar nerve (Neumann, 2002), (Zaharia, 
1994). The radial nerve innervates the extrinsic 
extensor muscles of the fingers and is responsible 
for the sensation on the dorsal part of the wrist and 
hand. The median nerve innervates most of the 
extrinsic flexor muscles of the fingers and is 
responsible for the sensation on the palmar-lateral 
part of the hand and the lateral three and one-half 
fingers. The ulnar nerve innervates the medial half 
of the flexor digitorum profundus muscle and is 
responsible for the sensation on the ulnar border of 
the hand and the ulnar one and one-half fingers. So, 
we propose the connection of the special glove with 
the median nerve and the ulnar nerve, because they 
realise the flexion motion of the hand in prehension. 
This is necessary, also, for maintaining the 
indispensable cortical representation of the motor 
and sensitive hand images.  
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Figure 1: The muscular structure of the hand 

2 PHYSICAL STRUCTURE 

In Figure 2 is presented the physical structure of the 
special glove. On the superior faces of the glove 
fingers are fixed 5 tubes with have their structure 
presented in Figure 3 (hydraulic or pneumatic 
actuators) and on the inferior faces (at end of the 
glove fingers) are fixed strain-gaugeds for force 
measurement. The chambers of the segment have 
reinforced rubber walls with fibers on a circular 
direction. Thus, it is easy to deform it in the axial 
direction while it resists deformation in the radial 
direction. The cylinder can be bent in a plan (or in 
any direction, if it has 3 chambers) by appropriately 
controlling the pressure in the two (three) chambers 
(Figure 3). This tube has a hyper-redundant structure 
with a great number of points of mobility. 

3 HIERARCHICAL CONTROL 

The problem of controlling coordinating robotic sys-
tems with multiple chains in real time is complex. A 

multiple chain hyper-redundant system is more 
complicated. A hyper-redundant robotic element is a 
physical system with a great flexibility, with a distri-

buted mass and torque that can take any arbitrary 
shape. Technologically, such systems can be obtain-
ned by using a cellular structure for each element of 

 
Figure 2: Physical structure of the special glove 

 
Figure 3: Physical structure of the tube 

 
the tube. The control can be produced using an elec-
tro-hydraulic or pneumatic action that determines 
the contraction or dilatation the peripheral cells. The 
first problem is the global coordination problem that 
involves coordination of several hyper-redundant 
elements in order to assure a desired trajectory of a 
load. The second problem is the local control 
problem, which involves the control of the 
individual elements of the fingers to achieve the 
desired position. The force distribution is a sub-
problem in which the motion is completely specified 
and the internal forces/torques to effect this motion 
is to be determined. To resolve this large - scale 
control problem, a two - level hierarchical control 
scheme is used (Cheng, 1995). The upper-level sys- 
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Figure 4: A multiple-chain hyper-redundant system 
 

tem collects all the necessary information and solves 
the inter-chain coordination problem, the force 
distribution problem. Then, the problem is 
decoupled into 5 lower-level sub-systems (5 fingers)  

4 MODEL FOR COOPERATIVE 
HYPER-REDUNDANT GLOVE 
ELEMENTS 

A multiple-chain hyper-redundant system of the 
glove is presented in Figure 4. With the chains of the 
system forming closed-kinematics loops, the 
responses of individual chains are tightly coupled 
with one another through the reference member 
(object or load). The complexity of the problem is 
considerable increased by the presence of the hyper-
redundant elements, ( )kjTM j K1, = , the systems 
with, theoretically, a great mobility, which can take 
any position and orientation in space (Ivanescu, 
1984), (Ivanescu, 1986). The dynamic equations for 
each chain of the system are: 
 

( ) ( )[ ] +∫ −+−ρ 'ds
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where we assume that each element (TMj) has a 
uniform distributed mass, with a linear density ρj 
and a section Aj. We denote by s the spatial variable 
upon the length of the arm, s ∈ [0, Lj]. We also use 
the notations: qj - Lagrange generalized coordinate 

for TMj ( the absolute angle), qj = qj (s,t), s ∈ [0,Lj] , 
t ∈ [0,tf], q'j= qj (s', t), s' ∈ [0, s] , t ∈ [0, tf],   Tj = 
Tj(s, t) - the distributed torque over the tube; τ j = 
τ j(s, t) - the distributed moment to give the desired 
motion specified on the reference member. All these 
sizes are expressed in the coordinate frame of the 
element TMj. The k integral equations are tightly 
coupled through the terms τ j , Fxj , Fzj where all of 
these terms determine the desired motion. We 
propose a two-level hierarchical control scheme 
(Cheng, 1995) for this multiple-chain robotic 
system. The control strategy is to decouple the 
system into k lower-level subsystems that are 
coordinated at the upper level. The function of the 
upper-level coordinator is to gather all the necessary 
information so as to formulate the corresponding 
force distribution problem and then to solve this 
constrained, optimization problem such that optimal 
solutions for the contact forces Fj are generated. 
These optimal contact forces are then the set-points 
for the lower-level subsystems. With F0- the 
resultant force vector applied to object expressed in 
the inertial coordinate frame (0), oDj - the partial 
spatial transform from the coordinate frame for the 
tube TMj to the inertial coordinate frame (0), we 
consider the hard point contact with friction and the 
force balance equations on the object may be written  
 

as: ∑= j
j FDF 00                                               (3) 

 
The object dynamic equations are obtained by the  
 
form M0 r = GF0                                                     (4) 
 
where M0 is inertial matrix of the object and r 
defines the object coordinate vector 
 
r = (x, z, ϕ)Τ                                                            (5) 
 
and r(t) represents the desired trajectory of the 
motion. The inequality constraints which include the 
friction constraints and the maximum force 
constraints may be associated to (3): 
 

∑ ≤ BFA jj             (6)  

where Aj is a coefficient matrix of inequality 
constraints and B is a boundary-value vector of 
inequality constraints. The problem of the contact 
forces can be treated as an optimal control problem 
if we associate to the relations (3) - (6) an optimal 
index (7): 
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∑=Ψ jj FC                    (7) 
 
This problem is solved in several papers: (Cheng, 
1995), (Mason, 1981), (Zheng, 1988) by the general 
methods of the optimization or by the specific 
procedures (Cheng, 1991). After all of the contact 
forces Fj are determinate, the dynamics of each tube 
TMj are decoupled. Now, the equations (1), (2) can 
be interpreted as same decoupled equations with a 
given τ j(s), s∈ [0, Lj] acting on the tube tip. 

5 APPROXIMATE MODEL 

A discrete and simplified model of (1), (2) can be 
obtained by using a spatial discretization:   
 
s1, s2, ... sN ; si – si-1 = ∆ |qj(si) – qj (sk)| < ε                   (8) 
 
 where i, k = 1, 2, ... nj  ∆, ε are constants and ε is 
sufficiently small. We denote sI = i∆, Lj = nj∆.  
 

( ) ( ) j
ii

jj
ii

j sTsT ττ == ,                    (9) 
 
and considering the tube as a lightweight element, 
from (1), (2) it results (Ivanescu, 1986): 
 

JTJFJqJDJqJC =++ )(JqJM &&&                (10) 
 
where MJ, CJ are (nJxnJ) contact diagonal matrixes, 
D is (nJx2) nonlinear matrix (Ivanescu, 1986, 1995): 
 

( )J
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( )J
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J
JTTcolT K1=                                                (11) 

 
In the equation (10), FJ assures the load transfer on 
the trajectory. The uncertainty of the load m defines 

an uncertainty of the force FJ. FMJ is an estimation of 
the force upper bound and we assume that  
 

2,1; =≤− iFF ii
JMJ ρ                                     (12) 

6 CONTROL SYSTEM 

The control problem asks for determining the 
manipulatable torques (control variable) Tij such 
that the trajectory of the overall system (object and 
fingers) will correspond as closely as possible to the 
behavior. In order to obtain the control law for a 
prescribed motion, we shall use the inverse model. A 
closed-loop control system is used (Figure 5). Let 
q q qd

j
d
j

d
j, & , &&  be the desired parameters of the 

trajectory, Fdj the desired force applied at the j - 

contact point of the object, and, q q qj j j, & , && , Fj  the 
same sizes measured on the real system (or 
estimated), the error of the feedback system is given 
by: ∆q q qj

d
j j= − ; ∆ & & &q q qj

d
j j= −  ; 

∆&& && &&q q qj
d
j j= − ; ∆Fj = Fdj - Fj  The trajectory 

controller serves as the trajectory perturbation 
controller which generates the new variations 
δ q j ,δ &q j , δ &&q j , δ F j  in order to assure the 
performances of the motion for the overall system. 
The control law is proposed as,  
 

jjjjjjj qKqKqKq &&& ∆+∆+∆= 131211δ ; 
 

jjjjjjj qKqKqKq &&&& ∆+∆+∆= 232221δ  
 
δ && & &&q K q K q K qj j j j j j j= + +31 32 33∆ ∆ ∆ ;        (13) 

 

 
Figure 5: Control system architecture 
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The control law for the motion and force control 
requires 
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where we used the notations 
 
Pj = (I - Kj33 - dKj13);  Qj = (Kj32+ d  Kj12) ;  
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   The relations (14), (15) define the main 
conditions imposed to the controller in order to 
assure the global stability for the motion of the 
finger and for the force Fjd at the terminal point of 
the tube. If the condition (15) is easy to apply, the 
stability of the matrix (14) is more difficult to use. 
    We can obtain a simplified procedure if we 
choose suitable matrices Kjm,n (m, n =1, 2, 3) in 
the control law (13): 
 
I-Kj33-d Kj13 = α I ,  α - integer number ;  
 
Kj32 + d Kj12 = 2 Ξ j ;d (I-Kj11)-Kj31 = Ω j   (18) 

where ( )Ξ j j j
n

jdiag= ξ ξ ξ1 2, ,... ;  

( )Ω j j j
n
jdiag= ω ω ω1 2, ,...      (19) 

 
The equations (13) become 
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j
i

j
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j

i
j

i
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The equations for the control of the tube 
parameters and for the control of the force offer a 
simple control for a Direct Sliding Mod Control 
(DSMC) (Ivanescu, 1995). The DSMC is a control 

method which operates in two steps. First step 
assures the motion towards the switching line Sq 
(or SF): 
 
∆ ∆&q p qi

j
i
j

i
j+ = 0 ; ∆ ∆&F p Fj

iF
j j+ = 0     (21) 

 
by the general stability conditions (Figure 6). 

 
Figure 6: DSMC method 

 
 

Figure 7: The membership functions for control 
variables 
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When the trajectory penetrates Sq (or SF), the 

damping coefficients ξi
j

f
jK, 2 are increased , 
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j
i smax αω>ξ ; 
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The system is moving towards the origin, directly, 
on the switching line Sq (or SF).  

The switching line SF, Sq = 0 

j
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j
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7 FUZZY CONTROLLER 

A fuzzy control is proposed by using the control of 
the damping coefficient ξi

j
f
jK, 2  in (22)-(23). We 

consider a DSMC strategy with the switching of a 
control variable on the switching line (21), (Figure 
6). 
We shall let the errors ∆qi

j, ∆Fj and the error rates 
∆ ∆& , &q Fi

j j be defined by eight linguistic variables, 
labelled NB, NM, NS, NZ, PZ, PS, PM, PB 
partitioned on the error spaces [-∆qm, ∆qm], [-Fm, 
∆Fm] and the error rate spaces represented here 

[ ] [ ]− −∆ ∆ ∆ ∆& , & , & , &q q F Fm m m m  where all these 
quantities are normalized at the same interval. The 
membership functions for these quantities are 
shown in Figure 7. The fuzzy output variables, the 
control coefficientsξi

j
f
jK, 2 , will use four fuzzy 

variables on the normalized universe: 
ξi

j
i

jF* *= = { 0,  0.5,  1.0,  1.5,  2.0,  2.5 }  
 
where the range of the values is chosen such that 
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for the damping coefficient  ξi
j  , and for the force: 
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Figure 8: The memberships of the output variables 

 
     The memberships of the output variables are 
represented in Figure 8, where ST1, BT1 define 
linguistic variable: SMALLER THAN 1 and 
BIGGER THAN 1, respectively. According to the 
theoretical results obtained in the previous part of 
the paper, we can generate the control rules which 

establish a fuzzy control for a DSMC control 
(Table 1). 
  

 
The main idea is to assure the normal control 
towards the switching line and direct control when 
the trajectory penetrates this line. A standard 
defuzzification procedure based on the centroid 
method is then used.  
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