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Abstract: In this paper a new and fast algorithm for characterizing the behaviour of zero-input limit cycles that can 
appear in digital control systems when finite precision computer is used. This proposed algorithm suggests a 
practical approach to determine the impact of these parasitic oscillations against difficult theoretical 
solutions limited to simple systems and very conservatives in some cases. This algorithm is applicable to 
any kind of discrete system described by its difference equations and quantized by any quantization scheme 
and supply practical results in considerable less time that other exhaustive formulations. Some tables show 
the feasibility of the algorithm compared with exhaustive searches and theoretical calculations to 
characterize the limit cycles and its applicability for any kind of discrete system as different digital filters 
and digital control systems where different controllers are applied 

1 INTRODUCTION 

It is known that algorithms for digital control are 
implemented in microprocessors or microcontrolers 
whose internal registers have a length of 8, 16 or 32 
bits. This finite precision leads in errors due to the 
quantization of all values to be stored, such as, input 
signal, coefficients of systems and internal 
calculations. Besides, the internal representation of 
values in that oriented hardware is used to be in 
fixed point, so the dynamic margin for values 
decreases over other floating-point schemes.  
 That lost of information yields three important 
problems for the whole system performance: 
sensitivity of the coefficients, quantization errors in 
each internal storage node and the output, and some 
possible oscillations at the output and internal nodes 
called Limit Cycles (LC). The first one is a 
deterministic matter so that the quantization process 
moves the poles and ceros from these original 
positions. The design must guarantee that the 
magnitude of quantized poles is inside unit circle 
and its movement does not impair the final 
performance of the algorithm. The other problems 
are not deterministic matters, so the study is used to 
be analytic, based on statistical considerations or by 

mean of computer simulations of the system. 
 This paper focuses the study of one of the 
problems derived from finite precision arithmetic, 
the limit cycles. These are oscillations appeared at 
the output and internal registers when the input is 
zero or a constant. This problem can be especially 
important in control systems, where the controller 
could give non-zero signal to the system even 
though the input signal is zero (Slaughter, 1963), 
(Phillips, 1990). Greater oscillations can appear 
when internal register values overflows and is not 
saturated to the maximum value, so the system must 
be conveniently scales to avoid this effect. 
 The main goal of this paper is the study and 
characterization of possible limit cycles that can 
appear at the output or internal storage nodes of the 
digital control system, by mean of simulation 
algorithms on a computer. The system under study is 
shown in figure 1 that presents the overall system 
where appears the discrete equivalent of the 
controller that is usually implemented on a 
microcontroler under finite precision arithmetic. 
Figure 2 shows the simulated system, where only the 
controller must be quantized. 
 Earlier studies present different structures to 
establish the controller (Franklin, 1997), (Ogata, 
1996), (Phillips, 1990) that yield different results 
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under finite precision. So the analysis of this 
performance under finite arithmetic must be an 
integral part of the design process. 
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Figure 1: Discrete equivalent controller 
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Figure 2: Equivalent discrete for simulating in computer 

 Limit cycles is a topic widely studied by earlier 
researchers. Up to the moment most of these studies 
were theoretical approaches, looking for maximum 
bounds for each internal register while a limit cycle 
is present (Bauer, 1991), (Premaratne, 1995), 
(Green, 1988), (Yakowitz, 1973), (Djebbari, 1998). 
However these schemes need certain structures as 
state space (Bauer, 1991), (Premaratne, 1995) to use 
the matricial representation for calculations. Besides 
they lead to conservative results and they in general 
are applicable for low order filters or systems 
(Slaughter, 1963), (Phillips, 1990). High order 
systems are very difficult to analyse by these 
methods. Earlier studies use the computer to 
simulate the real behaviour of the system under 
finite precision (Bauer, 1991), (Premaratne, 1995) 
but they suggest exhaustive algorithms where a great 
amount of state vectors are tested. Besides most of 
them require certain structures, rounding strategies 
and mainly are only useful for low order filters 
because the high computer time they take. 
 In this paper a partial search algorithm is 
presented, where the choice of state vectors to 
analyse is strategically selected by the results 
obtained up to the moment for the vectors still 
analysed. The proposed algorithm is also applicable 
for analysing any discrete system since the 
difference equations are used to describe the real 
system. 
 The paper is organized as follows. The section 2 
shows the representation for discrete systems to be 
analysed by a computer, quantization schemes and a 
detailed explanation for the proposed algorithm. The 

section 3 presents results that show the feasibility of 
the algorithm to be used for different digital filters 
and then for discrete control systems. Section 4 ends 
with some conclusion for the use and applicability of 
the proposed algorithm over other approaches. 

2 PROPOSED ALGORITHM 

2.1 Discrete system representation 

To develop an algorithm for analysing zero input 
limit cycles we suggest using the difference 
equations to describe the performance of the digital 
system. In this way we can get access to the 
information of the internal representation of the 
system. This is an important key to simulate the real 
performance of the system for analysing not only 
limit cycles but also any quantization problem like 
noise and overflow in each node. 
 The only problem is to order the internal nodes 
of the system to obtain a computable difference 
equation in each node where for obtaining the 
following value in we only have to consider 
preceding values of other nodes (Diniz, 2002). 
Complying with considerations in (Diniz, 2002) and 
reordering the whole system we conclude that: 
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Where: 
• N: order (number of internal computable 

nodes) of the system. 
• j: node of computation. 
• ( 1jx k + :value of jth node in the 

following time k+1. 
• : transmission coefficients of the 

branch connecting node m to j. 
,m j m jb a

 Notice the in equation (1) zero input is 
considered and with conveniently ordering of 
internal nodes =0 for m≥j, so all the recurrence 

equations only need values of internal signals still 
calculated. 
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 Under fixed-point arithmetic, equation (1) turn to 
(2): 
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where Q is the quantization process and is the 
quantized value in node j. Note that in (2) double 
precision accumulator is considered since there is 

$
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only one quantization, that is the whole sum of all 
products.  
 The quantization processes considered in this 
paper are shown in figure 3, where  is the 
quantization step size and B is the number of bits 
used. Case (a) is the most natural quantization in 
microcontrolers, called two’s complement truncation  

12 Bq − +=

(TC2), case (b) is Signed Magnitude Truncation 
(SM) and case (c) is Rounding (RD). These are the 
schemes analysed in this paper but the representation 
proposed allows using any other one because of 
getting access to the value in each real node 
programmed in the hardware. 

2.2 Description of the algorithm 

The proposed algorithm for checking the behaviour 
of the zero input limit cycles is based on 
experimental results obtained after analysing many 
filters under exhaustive searches as in (Bauer, 1991), 
where it has been observed that all limit cycles 
detected present low amplitudes and are confined in 
a closed region in the n-dimensional space (N is the 
number of inner register in the filter). Figure 4 
shows this typical situation (each axis shows the 
amplitude stored in each register in entire multiples 
of quantization step size q). This sentence meets 
with demonstrated theoretical bounds on amplitude 
in each internal registers obtained by some 
researches (Bauer, 1991), (Premaratne, 1995), 
(Green, 1988), (Yakowitz, 1973). Therefore it seems 
to be not worthy to check toward limit cycles to all 
possible state vectors up to a conservative theoretical 
bound as in exhaustive algorithms (Bauer, 1991), 
(Premaratne, 1995), (Djebbari, 1998). Checking only 
a particular set of state vector could yield results 
very closed to exhaustive formulations but in a 
considerable less time.  
 The proposed algorithm tries to select a reduced 
set of state vectors to test for the convergence 
toward a possible limit cycle. This set will be 
smaller than the one formed by all possible state 
vectors up to a theoretical bound calculated for 
exhaustive formulations. 

 For selecting this set of vectors we suggest to 
divide the search process in two stages, with two 
subsets of vectors: one called fixed-stage and other 
called guided-stage. 
 The aim of the first stage is to place the search in 
the region of all limit cycles are confined. This point 
establishes the beginning of a more accurate search 
in this confined region where probably we will find 
all limit cycles. 
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Figure 4: state vectors reached in all limit cycles 

Fixed-Stage 
The main aim for this stage is to place the search in 
the unknown region where it is demonstrated that all 
LCs are presented (Bauer, 1991). Therefore we 
choose a set of state vector for this first stage Fγ  : 
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 This set consist of all state vectors x with infinite 
norm equal to 1 and all vectors obtained by 
multiplying each element by the scalar 2 , for n 
from 0 to N. Therefore the process tests more state 
vectors with low infinite norms, where is more 
probable that limit cycles are placed. Once this set 
has been tested, the process obtains all state vectors 
belonging to limit cycles, set or vectors called O, 
and, from it, the maximum bound in each internal 
node. That is the bound vector M. This value is the 
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Figure 3: quantization schemes considered 
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beginning for the next stage, suggesting that we 
could find limit cycles of greater infinite norm. 
Therefore now the process make a deeply search in 
this region. 

Guided-Stage. 

As we know that all LCs are placed very closed one 
to another in the N-dimensional region, where 
probably we are from the first stage, this stage 
suggest to test all vectors resulting of multiply all 
elements of the set formed by x such as || || 1∞ =x  

by n=|| . This bound M is updated in the 
stage and leads the process, so the LCs detected 
guides the set of vectors to test. The process ends 
when have been tested vectors with infinite norm h 
times greater the maximum bound found at the 
moment. In this case we consider out of the region 
of LCs. So, this stage suggests a subset of vectors to 
test 

|| 1∞ +M

( )n
Gγ : 

The flowchart in figure 5 shows the process, where 
the nomenclature used to described it is: 

 B: number of bits used in implementation. 
 q=2-B+1: quantization step size. All 

information in each register and output is 
normalized to this number. 

 N: number of inner registers of the filter. 
 { }1 2 3 ... ...j Nx x x x x=x state vector or set 

of quantized values in all internal nodes. 
 h: free parameter to guarantee the robustness 

of the algorithm (in the results obtained h=3). 
 ; i is the 

order of the different limit cycles detected. 
{ }/ belongs to a limit cycleiO = x x

 O= is the set of all different limit 

cycles. 

iO
i
U

 { }maxj j
x O

M x
∀ ∈

= x; =⎨xj ⎬, j=1,2,...N; 

 { }jM=M ; i=1,2,...N. Practical bound. 

The only problem is to detect the possible limit cycle 
from a certain state vector. This is the box called 
“Test of convergence” in the flowchart. We use the 
procedure described (Utrilla, 2000), that is the 

fastest of the papers at the moment (Bauer, 
1991)(Premaratne, 1995), (Djebbari, 1998). This 
procedure suggest make iterations with the 
difference equations and zero input comparing with 
zero vector and the initial one. If some iterations 
have been made without finding anything we update 
with the current state vector because probably we 
are in the transient state. Considerations about 
number of iterations and updating are detailed in 
(Utrilla, 2000). 
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Figure 5: Flowchart of the proposed algorithm 
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 The result of the whole process is a set of all 
vectors belonging to LCs called O. So we can obtain 
all the information we need about the behaviour of 
the system on behave to limit cycles, that is 
maximum practical bound M, output in LCs C and 
period of them P. 

3 RESULTS 

3.1 Digital Filters 

Due to the feasibility of the algorithm to analyze any 
digital system characterized by its difference 
equations, many digital filters have been analysed to 
study their behaviour about LCs under different 
quantization schemes. Also comparative studies 
have been made with theoretical calculations 
(Yakowitz, 1973) and exhaustive search algorithms 
(Bauer, 1991), (Premaratne, 1995) with certain 
improvements realized in (Djebbari, 1998) and 
(Utrilla, 2000) for detecting a possible LC from a 
state vector. Some representative results are shown 
in Table 1. This table presents the too conservative 
theoretical bounds on amplitude against the real 
bounds obtained by exhaustive search algorithms. 
However, as the table shows, this approach takes 
long time analyzing irrelevant state vectors.  

Table 1: Different digital filter analysed 
 
 
 
 
 
 

 
 
 
 
 
This table shows the applicability of the proposed 

algorithm to analyse the behaviour of any discrete 
system over zero input limit cycles against 
theoretical calculations and exhaustive schemes. So 
it can be used as a integral part of design process 
when fixed-point arithmetic is used. 

3.2 Digital control systems 

Digital control systems as in figure 2 can be 
represented by its difference equations and therefore 
can be analysed its limit cycles behaviour by the 

algorithm proposed in this paper. Due to the reduced 
time to analysis, it should be used to select the best 
representation for the discrete controller, although 
all of possible cases performs the same control under 
infinite precision. 
 In this paper has been analysed the system 
presented in the figure 6 (Slaughter, 1963) 
 

 

Figure 6: Digital Control System 
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 The controller has been implemented by 
structures obtained from (Phillips, 1990) in the 
known forms 1D, 2D, 3D and 4D, each analysed the 
LCs under finite precission of 8 bits, saturation 
(SAT) and overflow (OV) and Rounding (RD), 
Two’s complement (TC2) and Signed Magnitude 
(SM) truncation schemes. 
 The system has been implemented with two 
cascade structures of 2nd and 1st order. This is no 
matter due to this part of the whole system has not 
been quantized since it represents a continuous time 
system. But its performance has an important 
influence on the whole discrete system. All these 
analysis are presented on table 2, where is shown the 
feasibility of the algorithm to test this type of control 
systems. This table presents the maximum bound 
obtained from the algorithm M (in multiples of 
quantization step size q), period of the worst limit 
cycle detected (T), maximum output in zero input 
limit cycles (C) and time in seconds taken in the 
analysis. The table shows the great difference 
between the data by saturation or overflow, and 
under the low amplitude of limit cycles under 
saturation, as we still suggested. An important 
difference is the behaviour under SM truncation, 
since limit cycles are lower or even are free of them. 
That is a rational event due to the characteristic of 
this truncation. 

Approach T C TIME     
(secs)

Theoretical 13 16 22
Exhaustive alg. 1 1 1 3 0 23
Proposed alg. 1 1 1 3 0 0,12

Theoretical 53 47 31 19
Exhaustive alg. 2 1 1 0 4 2 818
Proposed alg. 2 1 1 0 4 2 0,36

Theoretical 33 35 17 21
Exhaustive alg. 1 1 1 1 4 0 481
Proposed alg. 1 1 1 1 4 0 0,701

Theoretical 36 40 19 25 33
Exhaustive alg. 3 4 4 4 4 7 4 307
Proposed alg. 3 4 4 4 4 7 4 2,37

Laticce in state 
varibles, Elliptic, 
N=5, 16 bits TC2

Direct II Form, 
chebychev, N=3, 16 

bits RD

M

Transoposed Direct 
Form II, Chebychev, 

N=4, 16 bits TC2
Laticce in state 
varibles, Elliptic, 
N=4, 16 bits RD

 On the other hand it is presented the different 
behavior of the performance of each real 
implementation of the controller and the impact over 
the whole system, so it is important to establish an 
analysis of the whole system as in this paper, not 
only for the controller. 
 Due to the reduced time for analyzing these 
systems, it seem to be important to introduce this 
analysis as a part of the design process for choosing 
the correct implementation where working under 
fixed-point arithmetic. 
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SAT 2 0 0 1 1 0,19

O V 7 2 4 8 115 49,781

SAT 3 0 0 9 9 0,561

O V 4 25 2 7 116 67,427

SAT 0 0 0 0 0 0,371

O V 2 23 1 1 115 14,732

SAT 3 3 3 10 3 0,41

O V 5 102 102 4 115 40,538

SAT 4 4 4 1 5 32,01

O V 5 104 104 11 116 77,492

SAT 0 0 0 0 0 0,341

O V 4 103 103 4 116 15,322

SAT 5 3 3 1 1 10 3 23,914

O V 7 115 115 23 23 7 115 40,669

SAT 5 5 5 1 1 2 5 124,44

O V 5 116 116 23 23 4 116 53,817

SAT 0 0 0 0 0 0 0 7,431

O V 2 115 115 22 22 1 115 14,541

SAT 6 0 0 1 0 10 4 3,565

O V 8 13 3 19 2 5 116 329,474

SAT 7 3 1 3 0 15 13 883,591

O V 4 14 4 2 1 7 118 1350,53

SAT 0 0 0 0 0 0 0 0,371

O V 2 12 3 19 1 4 116 161,663
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4 CONCLUSIONS 

The behaviour of discrete control systems under 
finite precision applied to any data to be stored in a 
real hardware is dependent on the real hardware 
implementation, that is, the real discrete algorithm 
stored. Many different implementations have been 
early studied and they must be analized under finite 
precision to guarantee the good performance in real 
implementations. One of the problems under finite 
precision are the possible oscillations at the output 
and internal registers called limit cycles. 
 This paper suggests a fast algorithm for the 
analysis and characterization of those limit cycles 
that appear in any recursive implementation. It has 
been shown that presents a less computing time than 
exhaustive formulations and produce results more 
accurate than theoretical calculations. Besides it is 
applicable to any type of implementation and type of 
quantization scheme, since it uses the difference 
equation system to describe the system. 
 Therefore it can be used as a part of design 
process to select the best real implementation for the 
controller when working under fixed-point 
arithmetic. 
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