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Abstract: In this paper, partially reversibility property and reversibility enforcement are studied for unbounded Petri nets.
A method which tests partial reversibility, and also finds a bound vector guaranting reversibility for unbounded
Petri nets is developed and an algorithm of the method is generated. Furthermore a controller design approach
which enforces reversibility for unbounded Petri nets is introduced.

1 INTRODUCTION

Petri net model is a common tool for discrete event
systems. Some properties and definitions are used to
describe this model. Properties of Petri nets are de-
composed into two types such as behavioral and struc-
tural properties (Desrochers and Al-Jaar, 1995; Proth
and Xie, 1996). In this work, we consider reversibility
and partially reversibility which are two of important
behavioral properties of Petri nets.

Some approaches have been presented to analyse
reversibility and partially reversibility of Petri nets.
The most favor is constructing reachability set. But
it is not efficient for unbounded Petri nets because of
infinite number of reachable marking vectors (Peter-
son, 1981). If a Petri net is partially reversible for at
least one initial state, that is proven by using a struc-
tural analysis method named T-invariant (Desrochers
and Al-Jaar, 1995). The method which was developed
in (Jeng et al., 2002) verifies reversibility for 1-place
unbounded Petri nets. Since these approaches give
sufficient but not necessary conditions for partially re-
versibility, they do not propose a way to test partially
reversibility of all unbounded Petri nets.

In this work, reversibility enforcement is consid-
ered for unbounded Petri nets. It is possible to en-
force reversibility for a Petri net, if the net is par-
tially reversible. Hence, testing partially reversibility
is very important for our work. We present a method
to test partially reversibility for unbounded Petri nets.
If the net is partially reversible the method proposes
a bound vector covering all reachable markings in a

reversible subset of the reachability set. Moreover,
we explain the controller presented in (Aybar et al.,
2005) which enforces reversibility at each times it is
used with the bound vector proposed by our method.

2 PRELIMINARIES

2.1 Notations of Petri Nets

A Petri net is denoted by five tuple
G(P, T,N,O,m0), whereP is the set ofplaces,T is
the set of transitions,N : P × T → Z is the input
matrix that specifies the weights of arcs directed from
places to transitions,O : P × T → Z is theoutput
matrix that specifies the weights of arcs directed
from transitions to places, whereZ is the set of
non-negative integer numbers, andm0 is the initial
marking.

M : P → Z is a marking vectorin other words
marking, M(p) indicates the number oftokensas-
signed by markingM to placep. A transitiont ∈ T
is enabledif and only if M(p) ≥ N(p, t) for all
p ∈ P . A firing sequenceg is a sequence of enabled
transitionst1t2 . . . tk, wheret1, t2, . . . , tk ∈ T . A
markingM ′ is said to bereachablefrom M if there
exists a firing sequence starting fromM (i.e., the first
transition of the sequence fires atM ) and yielding
M ′ (i.e., the final transition of the sequence yields
M ′). The set denoted byR(G,M) is the set of all
marking vectors reachable fromM . R(G,m0) is
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called asreachability setof the Petri net. We let
E(G,M) to denote the set of transitions which are
enabled atM ∈ R(G,m0). For a Petri net, we also
let ρ(M, g) to denote thetransition function, which
gives the yielded marking when the sequenceg fires
starting fromM (ρ is in fact a partial function, since
it is not defined ifg contains transitions which are not
enabled) (Aybar anḋIftar, 2003). IfM ′ = ρ(M, g),
thenM ′ = M + (O − N)U = M + AU . Here;M
andM ′ are markings,N andO are input and output
matrices respectively,A := O − N is incidence
matrix andU : T → Z is firing count vectorwhose
jth element indicates how many timestj is fired ing.

Let us remember some behavioral properties
related to the discussion of this work.G is said
to be K-bounded, if M(p) ≤ K(p), ∀p ∈ P ,
∀M ∈ R(G,m0) (K : P → Z), G is said to be
boundedif it is K-bounded for someK : P → Z.
OtherwiseG is unbounded. G is said to bereversible
if m0 ∈ R(G,M), ∀M ∈ R(G,m0). G is said
to be partially reversibleif m0 ∈ R(G,M) for at
least oneM ∈ R(G,m0) such thatM 6= m0. Note
that, if a Petri net is partially reversible, there exists
a reversible subset ofR(G,m0) and it is possible
to find a bound vector covering all markings in this
subset. It is possible to enforce reversibility of the net
by using this bound vector with the controller in (Ay-
bar et al., 2005). Therefore, we say that this bound
vector guarantees reversibility for the considered net.
Deadlockis said to occur in a Petri net if there exists
M ∈ R(G,m0) such that no transitiont ∈ T can
fire atM (Desrochers and Al-Jaar, 1995). A marking
M̃ coversa markingM if M̃(p) ≥ M(p), ∀p ∈ P .
A markingM̃ dominatesa markingM , if M̃ covers
M and M 6= M̃ . That is denoted byM̃ >d M .
If M̃ >d M and E(G,M) = E(G, M̃), then
ρ(M̃, t) >d ρ(M, t), ∀t ∈ E(G,M) (Cassandras
and Lafortune, 1999).

The behavioral properties of Petri nets are com-
monly explained by using reachability set. Since
unbounded Petri nets have infinite number of reach-
able markings, the coverability tree (CT) is used to
analyse some behavioral properties instead of the
reachability set. CT is drawn as a tree, where each
node of tree either explicitly represents a reachable
marking ofm0 or covers a reachable marking ofm0

throughw notation. If there exists aw notation at a
place of a marking in the CT, this place is unbounded
place and this Petri net is unbounded (Desrochers and
Al-Jaar, 1995). Note that since the representation of
an infinite set is finite, an infinite number of markings
must be mapped onto the same representation in the
CT.

In this paper an algorithm in (Zhou and DiCe-
sare, 1993) (Algorithm 5.1 on page 104) is used to
construct CT.

3 REVERSIBILITY FOR
UNBOUNDED PETRI NETS

Some works have been presented about reversibility
of Petri nets (Peterson, 1981; Desrochers and Al-Jaar,
1995; Jeng et al., 2002). But none of them has abil-
ity of testing partially reversibility of unbounded Petri
nets.

In this section we will explain a method, calledPar-
tially Reversibility Testing Method(PRTM). PRTM
tests partially reversibility of unbounded Petri nets
and yields a bound vector guaranting reversibility for
the considered net. To facilitate discussion of the
method, we first give the following explanations and
Lemma 1.

Let R′ be a set of marking vectors such thatR′ :=
{M ∈ R(G,m0) | ρ(M, t) = m0, t ∈ T} then
M(p) = m0(p) ± a, a ∈ {0, 1...νp},∀p ∈ P . This
means∀M ∈ R′, M(p) ≤ m0(p) + νp, ∀p ∈ P .
Hereνp denotes the maximum number of token vari-
ation in placep by firing any enabled transition. It can
be determined for each placep ∈ P by the following
way:

νp = max
t∈T

(N(p, t), O(p, t)) (1)

Note that, ifM(p) > m0(p) + νp for at least one
p ∈ P , thenM 6∈ R′.
Lemma 1: If there exists a markingM ∈ R′ such
thatM 6= m0, Petri net is partially reversible. Other-
wise, Petri net is not partially reversible.
Proof: In a Petri net, each of the marking vector
M satisfiying ρ(M, t) = m0 are the members of
the setR′. So, if there existsM ∈ R′ such that
M 6= m0, Petri net is partially reversible. If there
exists noM ∈ R(G,m0) such thatρ(M, t) = m0

andM 6= m0 (there exists no markingM ∈ R′ such
thatM 6= m0), then there exists nõM ∈ R(G,m0)

such thatρ(M̃, g) = m0. Hence Petri net is not par-
tially reversible. ⋄

Although we do not know the reachability set for
unbounded Petri nets; as a result of Lemma 1, we
know thatR′ must have a marking vector other than
m0 for the presence of partially reversibility. There-
fore, it is efficient to determine onlyR′ set of the
Petri net to test partially reversibility and one does
not need to construct all reachability set for this test.
PRTM tests partially reversibility of the considered
unbounded Petri net by using this fact. It is possi-
ble to find a bound vector guaranting reversibility for
a Petri net, iff the net is partially reversible. Hence,
PRTM proposes a bound vector guaranting reversibil-
ity, if the considered net is partially reversible.

At the first step, PRTM determines unbounded
places of the Petri net by using the CT and begins
obtaining reachable markings fromm0 by firing tran-
sitions. In fact, for any unbounded Petri net it is
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possible to construct sets of reachable markings such
that markings in each set are obtained by firing tran-
sitions or transition sequences from markings in the
one previous generated set and each marking in each
set dominates one of the marking in the one previous
generated set (Cassandras and Lafortune, 1999). The
method determines these sets (R1, R2, R3...) step
by step. When it finds a setRi such that∀M ∈ Ri

there exists ãp ∈ P̃ (P̃ denotes the set of unbounded
places) such thatM(p̃) > m0(p̃) + νp̃, this means
Ri∩R′ = ∅. Then, the method obtains a setR̃ includ-
ing all of the markings obtained fromm0 to that point,
i.e R̃ =

⋃i−1

j=0
Rj . Since∀i ∈ {1, 2, ...}, each of the

markings inRi+1 will dominate one of the marking
in Ri, R′ of the Petri net is a subset of̃R and it is
determined by searching the markingsM ∈ R̃ such
thatρ(M, t) = m0. If there exists a markingM ∈ R′

such thatM 6= m0, this Petri net is partially reversible
(see, Lemma 1) and PRTM proposes a bound vector
covering all of the markings iñR for guaranting re-
versibility of the Petri net. Otherwise, Petri net is not
partially reversible (see, Lemma 1) and it is impossi-
ble to guarantee reversibility. Hence, the method does
not propose any bound vector.

3.1 Algorithms

In this section, the algorithm for PRTM, which is
explained in Section 3, is presented with the help of a
motivation example.

The main algorithm for PRTM is named
Main[G,M ] (see, Appendix A). In this algo-
rithm; first the set of unbounded places of a Petri
net is determined by the functioñP = CT (G)

which finds the set of unbounded places (P̃ ) of
Petri net by constructing CT; for the Petri net
shown in Figure 1, the set of vectors in the CT is
{[2 1 0]T , [1 2 1]T , [3 0 0]T , [0 3 2]T , [2 1 w]T ,

[1 2 w]T , [3 0 w]T , [0 3 w]T } andP̃ = {p3}. Then
the setR′ of Petri net is determined by the algorithm
Rprime[G, M, P̃ ]. If there existsM ∈ R′ such
that M 6= m0, Petri net is partially reversible and
a bound vector guaranting reversibility of the net
is determined. Otherwise Petri net is not partially
reversible (see, Lemma 1) and the algorithm is halted.

Main[G,M ] algorithm callsRprime[G, M,

P̃ ] to constructR′ set of Petri net (see, Appendix A).
At this algorithm, the setsR1, R2, ... are the sets of
markings and each of these sets are obtained by firing
transitions or transition sequences from markings in
the previous set. Each marking in each set dominates
one of the marking in the one previous set, i.e,Ri+1

is obtained by firing transitions fromRi, and each of
the markings inRi+1 dominates one of the marking
in Ri, i ∈ Z. For the construction of these sets;

Figure 1: Motivation example (Proth and Xie, 1996)

Figure 2: Obtained markings of Petri net in Figure 1

first, all enabled transitions are fired fromm0. This
leads new markings. The new markings which are
previously generated are labeled asold. The new
markings which are deadlock are labeled asdead. If
on the pathM̃ = ρ(m0, g) (path fromm0 to a new
marking M̃ ), there exists a markingM such that,
M̃ >d M , andE(G,M) = E(G, M̃), thenM̃ is la-
beled asroot (ρ(M̃, t) >d ρ(M, t), ∀t ∈ E(G,M)).
From markings which are not labeled asold, dead
or root, we continue firing transitions and obtain
new markings. If all of the enabled transitions of a
marking are fired, this marking is labeled ascnt. This
process is proceed until there exists no nolabeled
markings. Then, exceptold labeled markings, all
of the markings obtained fromm0 at this process
construct the setR0 and theroot labeled markings in
R0 construct the setSM0. Then a new cycle begins
by firing enable transitions of each markings inSM0.
As before, until there exists no nolabeled marking,
new markings are obtained and they are labeled. But
after that point rule of labeling asroot changes: a
new markingM̃ is labeled asroot if there exists a
marking M in the setSM0 such that,M̃ >d M
andE(G,M) = E(G, M̃). Then, exceptold labeled
markings, all the markings obtained fromSM0 at
this process construct the setR1 and theroot labeled
markings inR1 construct the setSM1. If ∀M ∈ R1,
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there exists ãp ∈ P̃ such that,

M(p̃) > m0(p̃) + νp̃, (R1 ∩ R′ = ∅) (2)

all of the markings in the setRi (i > 1) also sat-
isfy equation (2). This means, none of the mark-
ings which will be obtained can not be a new mem-
ber of the setR′ of Petri net. Then a set̃R (R′ ⊂
R̃) is obtained, i.e. R̃ = R0, and the setR′

of Petri net is determined by searching the mark-
ings in R̃ satisfyingρ(M, t) = m0, t ∈ T . For
the motivation example, the setR0 is determined as
{[2 1 0]T , [1 2 1]T , [3 0 0]T , [0 3 2]T , [2 1 1]T ,
[1 2 2]T , [3 0 1]T } (see, Figure 2). Since some
markings in the setR0 do not satisfy equation
(2), i.e [2 1 1]T ; from markings in the setR0,
a new set is constructed asR1 = {[0 3 3]T ,
[1 2 3]T , [3 0 2]T , [2 1 2]T } (see, Figure 2). Note
that, each of the markings inR1 dominates one of the
marking inR0. Since all markings inR1 satisfy equa-
tion (2), R̃ = R0. By searching the markingsM in
R̃ such thatρ(M, t) = m0, the setR′ is obtained as
R′ = {[1 2 1]T } for the Petri net shown in Figure 1.

If some of the markings ofR1 of a Petri net do not
satisfy equation (2), from each markings inSM1 their
enabled transitions are fired. By this way, new mark-
ings are obtained and the setsSM2 andR2 are con-
structed (exceptold labeled markings, all of the mark-
ings obtained from markings inSM1 at this process
construct the setR2 and theroot labeled markings
in R1 construct the setSM2). This process is proceed
until a setRi satisfying equation (2) is obtained. Then
a setR̃ (R′ ⊂ R̃) is obtained, i.e.̃R =

⋃i−1

j=0
Rj , and

the setR′ of Petri net is determined by searching the
markings inR̃ such thatρ(M, t) = m0.

If there existsM ∈ R′ such thatM 6= m0, Petri net
is partially reversible andMain[G,M ] algorithm de-
termines a bound vectorK covering all of the mark-
ings inR̃ and guaranting reversibility of Petri net. For
the motivation example, the setR′ is determined as
{[1 2 1]T }. Since[1 2 1]T 6= m0, Petri net is par-
tially reversible. The set of markings including all of
the markings on the pathρ(m0, g) = [1 2 1]T is a
reversible subset of the reachability set. SinceR̃ in-
cludes this set, the bound vector[3 3 2]T covering all
markings inR̃ guarantees reversibility of this net.

If there exists noM ∈ R′ such thatM 6= m0,
Petri net is not partially reversible and any bound vec-
tor is not determined by the algorithmMain[G,M ].
Because, there exists noM ∈ R(G,m0) such that
ρ(M, g) = m0, if a Petri net is not partially reversible.
Therefore, anyK can not guarantee reversibility of
the net.
Theorem 1: The bound vectorK obtained by the al-
gorithmMain[G,M ] guarantees reversibility for un-
bounded Petri netG.
Proof: If a markingM such thatM 6= m0 is a mem-

ber of R′, then Petri net is partially reversible and a
bound vectorK is determined. SinceK covers not
only all of the markings inR′ but also all of the mark-
ings on the path fromm0 to each markings inR′ (K
covers all of the markings iñR), it covers all of the
markings in a reversible subset of the reachability set
of the Petri net and it guarantees reversibility. ⋄

4 A CONTROLLER TO ENFORCE
REVERSIBILITY

In (Aybar et al., 2005), some algorithms and a con-
troller have been presented to enforce boundedness,
reversibility and liveness. In that work; initially, with
an arbitrarily chosen bound vector, a bounded reach-
ability set of an unbounded Petri net has been deter-
mined; then, the reversible subset of that bounded set
is constructed by using developed algorithms. Since
obtained reversible set may be empty, reversibility can
not be enforced by the controller everytimes.

If the considered unbounded Petri net is partially
reversible, PRTM presented in the Section 3 obtains
a bound vector,K, which guarantees reversibility for
unbounded Petri nets. By running the developed algo-
rithms in (Aybar et al., 2005) with the obtained bound
vector gives a reversible subset of the reachability set
of considered unbounded Petri net. So it is possible
to enforce reversibility for this net by using controller
presented in (Aybar et al., 2005). In this section that
controller will be explained.

If a bound vectorK is obtained by PRTM, Petri
net is partially reversible and it is possible to enforce
reversibility for this net by a controller.K bounded
reachability set is found by the algorithm named
Bounded-Set (Aybar et al., 2005), i.e.RB=Bounded-
Set(G,K). Here,K andG are the inputs of the algo-
rithm and represent the bound vector and definition of
the Petri net, respectively;RB is the output of the al-
gorithm and representsK bounded reachability set of
G. Reversible subset ofRB is found by the algorithm
named Reversible-Set, i.e.Rr=Reversible-Set(RB)
whereRr is the reversible subset ofRB. Note that,
sinceK guarantees reversibility,Rr 6= ∅. Then, it
is known that if a Petri net is partially reversible, the
controller c(M, t) below enforces boundedness and
reversibility of the net (Aybar et al., 2005).

c(M, t) =

{

1, if ρ(M, t) ∈ Rr

0, otherwise (3)

where,M ∈ R(G,m0), t ∈ E(G,M). If c(M, t) =
1, then ρ(M, t) ∈ Rr and firing transitiont from
marking M is allowed. If c(M, t) = 0, then
ρ(M, t) /∈ Rr and firing transitiont from marking
M is forbidden.
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5 EXAMPLE

Let us consider a Petri net modelled manufacturing
system borrowed from (Proth and Xie, 1996) as an
example. The Petri net model of this system is pre-
sented in Figure 3. Since the weights of arcs are unity,
νp = 1, ∀p ∈ P . For this Petri net, the set of places
P = {p1, p2, p3 , r1, r2, r3, p4, p5, p6}, the set of
transitionsT = {t1, t2, t3, t4, t5, t6}, and the initial
marking ism0 = [1 0 0 2 1 1 1 0 0]T . At the first step,

Figure 3: Example Petri net.

the algorithmMain[G,M ] calls the functionCT (G)
to find the unbounded places. Since there existsw
notation at some places (p2, p5) of some markings at
CT of this Petri net (Apaydın-̈Ozkan, 2005), the set of
unbounded places of this net is̃P = {p2, p5}. Then
Main[G,M ] calls the algorithmRprime[G, M, P̃ ]
to obtain a set includingR′ set of Petri net andR′ it-
self. For this purpose firstR0 thenR1 are obtained
(|R0| = 16, |R1| = 41, here| ∗ | denotes the number
of elements of set “∗”). Since R1 does not satisfy
equation (2), process continues andR2 is obtained
(|R2| = 63). ∀M ∈ R2, R2 satisfies equation (2).
This means,R2 ∩ R′ = ∅ and all the members of
R′ are obtained (Ri ∩ R′ = ∅, i ∈ {2, 3, 4, 5...}).
Then a set̃R includingR′ of Petri net is obtained as
R̃ = R0 ∪ R1 (|R̃| = 57). Through the markings in
the setR̃, only markingsM1 = [1 0 1 1 1 0 1 0 0]T

and M2 = [1 0 0 1 0 1 1 0 1]T reach tom0

by firing only one transition, i.e. ρ(M1, t3) =
m0, ρ(M2, t6) = m0. Hence,R′ is determined as
{M1, M2}. Since there exist someM ∈ R′ such
that M 6= m0 (M1 6= m0, M2 6= m0), Petri net
is partially reversible andMain[G,M ] determines
the vectorK = [1 4 1 2 1 1 1 4 1]T covering
all of the markings in the set̃R. The bounded set
RB, which is obtained byRB=Bounded-Set(G,K),
is partially reversible and the reversible setRr, which
is obtained byRr=Reversible-Set(RB), is not empty

(|RB| = 100, |Rr| = 75)1. As a result, ob-
tained K guarantees reversibility of the Petri net. Ad-
ditionally the controllerc(M, t) enforces not only
boundedness but also reversibility for this net. If
we were to give two specific cases as an exam-
ple, c([1 2 0 2 1 1 1 2 0]T , t1) = 1 since
ρ([1 2 0 2 1 1 1 2 0]T , t1) = [1 3 0 2 1 1 1 2 0]T ∈
Rr; c([1 4 0 1 0 1 1 4 1]T , t4) = 0 since
ρ([1 4 0 1 0 1 1 4 1]T , t4) = [1 4 0 1 0 1 1 5 1]T /∈ Rr.

6 CONCLUSION

In this work, we consider partially reversibility and re-
versibility enforcement for unbounded Petri nets. For
this purpose, a method and its corresponding algo-
rithm is developed. By using the algorithm, it is deter-
mined whether considered unbounded Petri net is par-
tially reversible or not. If it is partially reversible, the
algorithm determines a bound vector guaranting re-
versibility and the controllerc(M, t) enforces bound-
edness and reversibility of this net. If the Petri net
is not partially reversible, algorithm does not find a
bound vector and reversibility can not be enforced for
this Petri net.

In this work, a Matlab program is also developed to
simulate the presented algorithm.

Further research is underway to use T-invariants
(see, section 5.6 in (Desrochers and Al-Jaar, 1995))
for testing partially reversibility and reversibility en-
forcement of Petri nets. Only the Petri nets with con-
trollable transitions are the subjects under the discuss
in this work, this approach may be extended to Petri
nets with controllable and uncontrollable transitions.

APPENDICES

A) Algorithms for PRTM

Main [G,M]
P̃ = CT [G];
< R̃, R′ >=Rprime[G, pi];
If ( 6 ∃M ∈ R′ such thatM 6= m0) Then

“Petri net is not partially reversible”
Exit Main

Else
“Petri net is partially reversible”
For ( i = 1 : |P |)
K(i) = maxM∈R̃(M([P ]i));

End

1The setsR0, R1, R2, RB andRr of the example Petri
net are not given here due to space limitations. But one can
see them in (Apaydın-̈Ozkan, 2005).
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End
Return K

Rprime[G, M, P̃ ]

i = 0; SM0 = ∅;
For each̃p ∈ P̃ determineνp̃;
Do loop Rtilde

If (i=0) Then
Ri=m0;

Else
Ri=SMi−1;

End
Do loop Rxset

Select a nolabeled markingM from Ri;
If (M is previously generated) Then

LabelM asold; Ri = Ri\{M};
Else If (E(G,M) = ∅) Then

LabelM asdead;
Else If (i = 0 && ∃M̃ on the path fromm0 to M ,
such thatM >d M̃ , E(G,M) = E(G, M̃))Then

LabelM asroot; SMi = SMi ∪ {M};
Else If (i > 0 && ∃M̃ ∈ SMi−1 such that
M >d M̃ E(G,M) = E(G, M̃)) Then

LabelM asroot; SMi = SMi ∪ {M};
Else

Fire each transition inE(G,M) from M ;
Add each obtained marking vector to setRi;
LabelM ascnt;

End
If ( 6 ∃ nolabeled marking inRi) Then

If (i 6= 0)Then
Ri = Ri\SMi−1;

End
Exit Rxset

End
LoopRxset
If (∀M ∈ Ri ∃p̃ in P̃ such that
M(p̃) > m0(p̃) + νp̃ ) Then
R̃ =

⋃i−1

j=0
Rj ;

Exit Rtilde
End
i = i + 1;
Ri = ∅; SMi = ∅;

Loop Rtilde
For (i = 1 : |R̃|)

If (∃ t ∈ T such thatρ([R̃]i, t) = m0) Then
R′ = R′ ∪ [R̃]i;

End
End
Return R′ R̃

B) Notation used in the presentation of algoritms:

For a setX, |X| denotes the number of elements of
set X and [X]i denotes theith element ofX (i =
1, 2, ..., |X|). All the sets are assumed to be ordered.

If a new element is added to a set sizem, the new
element is taken as the (m + 1)th element of the set.
∪ is used to setunion. If a vectorX dominates a
vector Y , X >d Y denotes this situation.M(pi),
denotes theith place of markingM . The logic “and”
operation is represented by&& in the algorithms.
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