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Abstract: This paper proposes two Multi-agent approaches based on a tabu search method for solving the flexible Job 
Shop scheduling problem. The characteristic of the latter problem is that one or several machines can 
process one operation so that its processing time depends on the machine used. Such a generalization of the 
classical problem makes it more and more difficult to solve. The objective is to minimize the makespan or 
the total duration of the schedule. The proposed models are composed of three classes of agents: Job agents 
and Resource agents and an Interface agent. According to the location of the tabu search core, two versions 
have been proposed. The first one places the optimisation method only on the Interface agent whereas the 
second associates to each Resource agent its own optimisation process.  

1 INTRODUCTION 

In the later decades, extensive researches on 
scheduling have been reported from both theoretical 
and practical issues. Scheduling means allocating a 
set of jobs to a finite set of resources over time while 
satisfying a set of constraints. An important goal in 
the scheduling function is to assure that the work is 
completed as early as possible. 

Among the most difficult scheduling problems, 
we find the Job Shop Scheduling Problem (JSSP). 
Finding an optimal solution for such problems in a 
reasonable time seems to be very hard, in the 
majority of cases, because of their high complexity. 
In fact, this problem falls into the category of NP-
hard problems for which exact solving methods are 
inappropriate since they explode with problem size. 
However, approximate methods are more suitable 
for such problems. The latter are either based on 
local search techniques such as tabu search and 
simulated annealing or on evolutive techniques such 
as genetic algorithms and ant systems. 

In this paper, we are concerned with an extended 
class of the JSSP, namely the flexible Job Shop 
(FJSP), to which we propose two Multi-Agent 

models based on the tabu search optimisation 
method. The objective is to minimize the makespan 
or the total duration of the schedule. 

2 THE FJSP 

A JSSP consists in performing a set of n jobs  {J1, 
…, Jn} on a set of m resources {R1, …, Rm}. Each job 
Ji, i=1,…,n, is composed of ni operations that must 
be performed on the different resources according to 
a predefined order, known as the job process 
routing. This one characterizes the precedence 
constraints existing between the operations of one 
job. In addition, each operation has a processing 
time known in advance and can be processed by only 
one resource. 

Furthermore, each job has to be achieved in a 
temporal range defined by its release date, before 
which the job cannot be started, and its due date, 
before which the job must be completed. This 
temporal range defines the temporal constraints of 
that job. Moreover, a resource can perform only one 
operation at a time, which corresponds to the 

31
Ennigrou M. and Ghédira K. (2005).
CENTRALIZED AND DECENTRALIZED OPTIMISATION TECHNIQUES FOR THE FLEXIBLE JOB SHOP SCHEDULING PROBLEM.
In Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Robotics and Automation, pages 31-36
DOI: 10.5220/0001176900310036
Copyright c© SciTePress



disjunctive constraints, and an operation cannot be 
interrupted unless it is finished, i.e. no pre-emption 
is allowed. A solution for the JSSP consists in fixing 
a start time for each operation satisfying the set of 
constraints. 

FJSP, first introduced by (Nuijten & Aarts, 
1996), is a generalisation of the above mentioned 
problem, where each operation can be processed by 
more than one resource and has consequently a 
processing time depending on the resource used. A 
solution consists then not only in sequencing the 
operations on the resources and fixing them a start 
time but also in allocating them to a resource likely 
to achieve them. This problem is also NP-hard. 

3 TABU SEARCH 

The models we propose in this article are based on a 
combinatorial optimisation technique, namely the 
tabu search (TS) method, proposed by (Glover, 
1986), which is a meta-heuristic based on the local 
search principle. Beginning from an initial solution, 
the local search consists to choose, at each iteration, 
the best solution in the current solution 
neighbourhood, even if it does not improve the 
quality of the solution. A neighbourhood is 
composed of all the solutions obtained by a simple 
move on the current solution. These solutions are 
named, then, neighbours of the current one. TS have 
proved its power to handle JSSPs. Several 
researches have used TS and good results have been 
obtained. Among the approaches proposed for the 
JSSP, the ones proposed by (Mastrollili & 
Gambardella, 2000), (Brucker & Neyer, 1998) and 
(Chambers & Barnes, 1996). 

In order to escape local optima in which the 
system can be easily trapped, TS uses a temporary 
memorisation structure in which it keeps track of the 
last visited solutions: the tabu list. In fact, a solution 
is forbidden during a number of iterations equal to 
the tabu list size. Then, the best solution among the 
ones not forbidden is selected for the next iteration. 

Although its efficiency in solving many difficult 
problems, TS remains yet hardly adaptable to FJSP 
because of the great number of parameters to define: 

– initial solution, 
– neighbourhood function, 
– evaluation of the current solution, 
– tabu list size, etc. 

Later in this paper, we will describe briefly our 
adaptation of the different parameters to the FJSP. 
The next section presents the two multi-agent 
models proposed and subsequently their global 
dynamic. 

4 MULTI-AGENT MODELS 

Two Multi-Agent models have been proposed for 
solving FJSP. The first one consists in centralizing 
the optimisation process in a unique agent 
responsible for finding the optimal solution in 
cooperation with the remainder of the agents which 
are responsible for generating successive feasible 
solutions at each step of the process. Whereas, the 
second one distributes the optimisation process 
between a collection of agents cooperating together 
in order to find the best possible solution.  

Since scheduling problems involve two sorts of 
constraints: the ones concerning the jobs, namely 
precedence and temporal constraints, and those 
concerning the resources, namely disjunctive 
constraints, both Multi-Agent models proposed in 
this paper are then composed of two agent classes: 
Job Agents and Resource Agents responsible for the 
satisfaction of the two classes of constraints. In 
addition, a third agent class, containing a single 
agent, the Interface agent, is added to both models. 
The degree of importance of the latter agent in the 
solving process differs from the first model to the 
second. In fact, in the first model, it contains the 
core of the TS method. However, in the second 
model, its role is limited to the interface between the 
agents and the user. The optimisation process, in this 
case, is distributed among the Resource agents. 

Each agent in these models has its own 
acquaintances (i.e. the agents that it knows and with 
which it can communicate), a local memory 
composed of its static and dynamic knowledge and a 
mailbox in which it stores the messages received 
from the other agents. In the remaining of this 
section, we describe briefly each agent class in both 
models. 

4.1 Centralized Optimisation Model 

4.1.1 Job Agent 

The acquaintances of Job agent are composed of 
Resource agents that are likely to fulfil its operations 
and of the Interface agent. Its static knowledge 
includes its release and due dates, its process routing 
and the different processing times of its operations 
according to the resources. Whereas its dynamic 
knowledge comprises the start times of its operations 
and the current resources to which they are 
allocated. 

The Job agent is satisfied when all its operations 
have been affected to potential resources and when 
all its constraints are not violated and in this case it 
does nothing. Otherwise, it is unsatisfied and it tries 
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to assign an operation to an eligible resource in 
cooperation with its acquaintances.  

4.1.2 Resource Agent  

The acquaintances of Resource agent are composed 
of all Job agents whose operations are likely to be 
fulfilled by it and of the Interface agent. Its static 
knowledge encloses the list of operations that it can 
perform along with their processing times. While its 
dynamic knowledge is composed of the operations 
currently assigned to it and their start times. 

The Resource agent is satisfied when no 
overlapping conflict exists between two operations 
assigned to it and in this case it does nothing. If not, 
it is unsatisfied and it tries to solve these conflicts by 
sending one of the conflicting operation to its Job 
agent in order to replace it elsewhere.  

4.1.3 Interface Agent  

The Interface agent acquaintances are composed of 
all the agents existing in the system. Its static 
knowledge contains: 

– The maximal number of iterations allowed 
– The tabu list size 

Its dynamic knowledge is composed of: 
– The tabu list 
– The current solution and its makespan 
– The best solution encountered so far and its 

makespan 
– The current number of iterations performed. 
As mentioned before, the Interface agent, in this 

model, contains the core of the optimisation process. 
The Interface agent remains unsatisfied until the 
current number of iterations exceeds the maximal 
number of iterations allowed. Otherwise, it delivers 
the best solution to the user. 

4.2 Distributed Optimisation Model 

4.2.1 Job Agent 

The acquaintances of Job agent are composed of all 
Resource agents and the Interface agent. Its static 
knowledge includes its release and due dates, its 
process routing and the different processing times of 
its operations according to the resources. Whereas it 
has no dynamic knowledge. 

The Job agent is satisfied when all its operations 
have been assigned, and in this case it does nothing. 
Otherwise, it is unsatisfied and it tries to assign an 
operation to an eligible resource in cooperation with 
its acquaintances. 

4.2.2 Resource Agent  

A Resource agent can communicate with all the 
other agents existing in the system. Its static 
knowledge encloses the entirety of the information 
concerning the operations; i.e. their processing 
times, their potential resources, their predecessors 
and successors according to their job process 
routings, etc.; along with the maximal number of 
iterations allowed, the number of iterations allowed 
between two successive improvements and its own 
tabu list size. While its dynamic knowledge is 
composed of its tabu list, its current solution and its 
cost, the best solution that it has encountered so far 
and its cost, the number of iterations that it has 
performed, the number of iterations since the last 
improvement made and a list of the best solutions 
reached by the other Resource agents.  

The Resource agent is unsatisfied while the 
number of iterations that it has performed is less 
than or equal to the maximal number of iterations 
allowed. Otherwise, it is satisfied and it does not 
anything. 

4.2.3 Interface Agent  

The Interface agent acquaintances are composed of 
all the agents existing in the system. This agent has 
no static knowledge. However, its dynamic 
knowledge is composed of the list of the best 
solutions encountered by the Resource agents and 
the global best solution and its cost. 

It is satisfied when all the other agents are 
satisfied and in this case it delivers the best solution 
found to the user. Otherwise, it is unsatisfied and it 
does nothing. 

In the remaining of this paper, we present the 
Multi-Agent global dynamic in the two cases of 
initial solution and optimal solution determination. 

5 MULTI-AGENT GLOBAL 
DYNAMIC 

In this section, we describe the global dynamic of 
both Multi-Agent systems proposed for the FJSP. 
Two main phases compose this global dynamic: 
initial solution determination phase and optimisation 
phase based on TS. The former is similar in both 
models, whereas the latter differs from the 
centralized version to the decentralized one. The 
following section describes the initial solution 
generation process used for generating the initial 
solution from which the optimisation starts. Next, 
the optimisation processes of both models will be 
described.  

CENTRALIZED AND DECENTRALIZED OPTIMISATION TECHNIQUES FOR THE FLEXIBLE JOB SHOP
SCHEDULING PROBLEM

33



5.1 Initial solution determination 
phase 

The initial solution is the result of agent cooperation. 
Initially, the Interface agent creates the different Job 
and Resource agents and sends the message 
“Determine_Initial_Allocation(Jk)” to Job agents in 
order to find an initial allocation for all their 
operations. The job agent selects, consequently, the 
less loaded resource among the potential resources 
and a start time d such thatFor the first operation of a 
job (according to the process routing) d is equal to 
the release date of the job. Otherwise, d is equal to 
the finish time of its precedent operation. 

Such an initial allocation satisfies all precedence 
and temporal constraints. However, it remains to 
verify the disjunctive constraints. Each time an 
operation is assigned to a resource, its Job agent 
informs the concerned Resource agent through the 
message “Operation_allocated(Rl, Oi, d)”. At the 
receipt of this message, the Resource agent Rl checks 
its satisfaction. In the case it is unsatisfied, i.e. there 
is an overlapping conflict between this operation and 
another operation that has been already affected to it, 
it tries to find another satisfying location on it which 
start time d1 is the closest possible to d. If such a 
location exists, then it informs the Job agent through 
the message “Operation_modified(Jk, Oi, d1)”. 
Otherwise, it ejects the operation and sends it to its 
Job agent in order to search for another location 
through the message “Operation_refused(Jk, Oi)”. 
At this moment, the Job agent sends the operation to 
another potential resource.  

The process above-mentioned will be repeated as 
many times as the operation is not yet assigned and 
for a predefined number of iterations. Once this 
threshold is exceeded, namely the Job agent has not 
found any location on a potential resource, it will 
request one of the possible resources to create a 
location through the message “Create_location(Rx, 
Oi)”. Such a location must satisfy all problem 
constraints. Similarly, if the Resource agent fails in 
creating such a location, it ejects the operation and 
sends it to its Job agent to contact another Resource 
agent, and so on. This process stops when a second 
predefined threshold has been exceeded. 

5.2 Optimisation process 

5.2.1 Centralized Optimisation Process 

As mentioned before, in this first approach the core 
of the TS is implanted on the Interface agent. The 
latter generates the neighbourhood of the current 
solution and then chooses the best non-tabu move 

contained in it using its evaluation mechanism. This 
best move is then sent to the other agents in order to 
generate the feasible solution obtained by applying 
this move on the current solution, and so on. 

In the following, we describe the parameters of 
the TS used in this model. 
Neighbourhood function 
A tabu search-based approach complexity depends 
essentially on (1) the current solution neighbourhood 
size and on (2) the evaluation scheme of this 
neighbourhood with which the best solution will be 
determined. It seems then interesting to reduce the 
size of the neighbourhood in order to reduce 
problem complexity. 

To present the neighbourhood function of the 
centralized optimisation process, we need first 
define the notion of critical path. A critical path of a 
solution is the path which length is equal to the 
schedule one and that is composed of operations 
related to by either a precedence constraint, or a 
disjunctive constraint. 

A critical operation is an operation which 
belongs to a critical path. The neighbourhood of a 
solution is obtained by two types of moves: Switch 
of two adjacent critical operations achieved by the 
same resource or migration of a critical operation on 
another potential resource. 
 Neighbourhood evaluation  
The best non-tabu neighbour belonging to the 
current solution neighbourhood will be selected for 
the next iteration. Hence, all neighbours must be 
evaluated in order to determine the best one. 
However, a global evaluation, i.e. computation of all 
start times of all operations, of each neighbour will 
need a considerable time. For this reason, only a 
subset of operations will be taken into account and 
to which start times will be redefined. These 
operations are effectively concerned by the move 
executed. 
Optimisation process 
At the end of the first phase detailed earlier, the 
Interface agent receives the initial solution and 
launches then the second phase based on TS. The 
following algorithm presents the core of the 
optimisation process implanted in the Interface 
agent. 

1. tabu_list ← ∅ 
2. nb_iter ← 0 
3. current_sol ← initial_solution 
4. best_sol ← current_sol 
5. While nb_iter <= nb_iter_max do 
6.     iter_diversif ← 1 
7.        While iter_diversif<=iter_max_diversif &  
              nb_iter <=   nb_iter_max do 
8.           path ← critical_path (current_sol) 
9.           neighbH ← determine_ neighbH(path) 
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10.           best_N←determine_best_N(neighbH) 
11.           tabu_list←add_in_tabu_list (best_N) 
12.          current_sol ←perform_move  

                       (current_sol,best_N) 
13.          if cost(current_sol)<cost(best_sol)  then 
14.              best_sol ← current_sol  
15.              iter_diversif ← 0 
               End if 
16.        nb_iter ← nb_iter +1 
17.        iter_diversif ← iter_diversif +1 
          End while 
18.    Diversification 
      End while 

Once the best neighbour among the 
neighbourhood of the current solution has been 
chosen, the Interface agent sends the operation 
concerned by the move chosen to its Job agent in 
order to inform it about the move to perform. At the 
receipt of this operation, the Job agent sends it to the 
Resource agent Rl in order to find a location starting 
at a date d. The date d is equal to the finish time of 
the predecessor of Oi. The same process involving 
the cooperation between the agents, described in the 
first phase, will then be repeated in the case that this 
assignment leads to a conflict on resource Rl, 
otherwise, no changes are made. 

When the number of iterations between two best 
solutions exceeds a predefined threshold 
“iter_max_diversif”, a diversification phase is 
performed. The latter consists in varying the search 
in order to explore new regions of the search space. 
In our approach, such a phase is characterized by 
replacing some operations selected randomly. An 
operation is replaced on one of its potential 
resources selected also randomly. 

5.2.2 Decentralized Optimisation Process 

In this approach, we have distributed the 
optimisation process among the Resource agents. 
Each Resource agent will, from now on, have its 
own optimisation process and its individual 
parameters of its TS. The Resource agents will send 
mutually the best solutions encountered in order to 
help each other to diversify their search process.  

In the following, we describe the parameters of 
the TS used in this model. 
Neighbourhood function 
The neighbourhood of a current solution in a 
Resource agent is obtained only by switching two 
operations achieved by this resource or by 
transferring an operation currently affected on this 
resource to another potential resource. 
 Neighbourhood evaluation  
The best non-tabu neighbour belonging to the 
current solution neighbourhood will be selected for 

the next iteration. The subset of operations that will 
be concerned and to which start times will be 
recomputed is the same as defined for the first 
version.  
Optimisation process 
Once the initial solution has been determined, the 
Interface agent sends it to each Resource agent in 
order to start its local optimisation process. The 
Resource agent determines then, the neighbourhood 
of the current solution. After evaluating the 
neighbourhood, the Resource agent chooses the best 
non-tabu neighbour (best_N). When no non-tabu 
neighbour exists, the Resource agent continues its 
process from a solution already sent by another 
Resource agent and which has been stored in the list 
of best solutions (list_best_solutions). In the case 
that the latter is empty, a diversification phase will 
take place. When the neighbour is chosen, the move 
will be accomplished and the new solution will be 
obtained. In the case that the new current solution 
improves the best solution (best_sol) encountered so 
far, the Resource agent sends a message to the other 
Resource agents in order to add this solution to their 
lists of best solutions. When the number of iterations 
between two best solutions exceeds a predefined 
threshold “iter_max_diversif”, a diversification 
phase is performed. The following algorithm 
presents the core of the optimisation process 
implanted in the Resource agent. 
1. tabu_list ← ∅ 
2. nb_iter ← 1 
3. current_sol ← initial_sol 
4. best_sol ← current_sol 
5. While nb_iter <= nb_iter_max do 
6.  iter_diversif ← 1 
7. While iter_diversif <= iter_max_diversif   
          &   nb_iter <=  nb_iter_max do 
8.   neighbH← determine_neighbH(current_sol) 
9.   best_N← determine_best_N(neighbH) 
10.      While best_N = nil  
             &  list_best_sol is not empty do 
11.          alea←random_selection(list_best_sol) 
12.             neighbH← neighbH ∪ {alea} 
13.            tabu_list ← ∅ 

   End while 
14.      If best_N <> nil then 
15.           tabu_list←add_in_list_tabu  (best_N) 
16.          current_sol ← perform_move   

                           (current_sol, best_N) 
17.         If cost(current_sol) < cost (best_sol) then 
18.            best_sol ← current_sol  
19.            iter_diversif ← 1 
20.            loop on Resource agents Ri        
21.              send_best_sol(Ri,best_sol) 

       End loop 
             End if 

  Else    
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22.        current_sol← Diversification(current_sol) 
23.        iter_diversif ← 1 
24.        tabu_list ← ∅ 

  End if 
25.     nb_iter ← nb_iter+1 
26.     iter_diversif ← iter_diversif+1 
        End while 
27.  current_sol ← Diversification(current_sol) 
28. iter_diversif ← 1 
29. tabu_list ← ∅ 
     End while 

6 EXPERIMENTATION 

Some experiments have been made on various 
benchmarks defined by (Chambers & Barnes, 1996), 
(Dauzerre & Paulli, 1997), etc. These benchmarks 
have a number of jobs varying in the set {10, 15, 
20}, the number of resources in the range [5, 20], the 
number of operations per job in the range [5, 25] and 
the number of potential resources per operation in 
the range [1,3]. Consequently, the benchmarks 
considered have a total number of operations 
ranging in [50, 500]. 
The parameters used in the TS of each Resource 
agent are the following: 
− Tabu list size varying in {8,10,15,20,30} for the 

centralized process and in {8,10} for the 
distributed one. 

− Total number of iterations nb_iter_max fixed to 
1000 in the centralized approach and to 300 in the 
distributed one. 

− Number of iterations between two diversification 
phases varying in {250,300,350} for the 
centralized process and in {20,40} for the 
distributed one. 
Table 1 presents the results obtained by both 

approaches for some instances among the 
benchmarks mentioned earlier as same as the lower 
and the upper bounds (LB and UB) presented in the 
literature for the same instances.  

Table 1: Results for Lawrence & al. instances 
Benchmark LB UB Centralized 

process 
Distributed 

process 
la01 609 609 620 662 
la02 655 655 666 704 
la03 550 554 575 596 
la04 568 568 581 675 
la05 503 503 503 541 

 

7 CONCLUSION 

In this article, we have presented two Multi-Agent 
approaches for solving the FJSP. These approaches 
are based on the TS. The Multi-Agent systems 
proposed are composed of three agent classes: Job 
agents, Resource agents and an Interface agent. In 
the first approach, the core of the TS is implanted in 
the Interface agent and the other agents cooperate in 
order to generate a feasible solution from the best 
neighbour of the current solution. In the second 
approach, each Resource agent has its own TS and 
the Resource agents send mutually their best 
solutions encountered. Some experiments have been 
made on a plenty of benchmarks. The results in both 
approaches show that the solution provided is close 
to a range defined by the lower and the upper 
bounds given in the literature.  
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