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Abstract: The diagnosis is defined as the process of detecting an abnormality in the system behavior and 
isolating its causes or sources. Not all the systems are diagnosable. Thus, before Appling a 
method to diagnose a system, we need to know if this system is diagnosable according to the set 
of failures required to be detected and isolated. This paper presents an algorithm to determine if a 
system is detectable or not, i.e., if we can know, at each instant, whether the system works under 
a normal or abnormal functioning state. In the case that the system is detectable, this algorithm 
determines if this system is diagnosable. This algorithm combines event and state based 
approaches in order to maximise the diagnosability power with a minimum number of sensors. In 
addition, the time is integrated and modelled with fuzzy intervals to enhance this diagnosabilty 
power and to take into account the imprecision of events occurrences instants. An example of 
manufacturing system is used to illustrate the functioning of this algorithm. 

1 INTRODUCTION 

The complexity of industrial systems increases 
rapidly while in the same time safety, availability, 
reliability, and performances of these systems rise. 
Consequently, the potential for system to fail is 
enhanced regardless how safe the designs are, how 
improved the quality of control techniques are and 
how better trained the operators are (Perrow, 1984). 
Discrete Event System (DES) is dynamic systems 
equipped with a state space and a state-transition 
structure. One of the key benefits of a DES is that 
there is no need to descretize time and yet one can 
capture the asynchronous nature of event processes. 
DES is often modelled in using a finite-state 
automaton, a Petri net or process algebra. Each 
modelling tool has its advantages and disadvantages 
depending on the objectives of modelling: model 
complexity or natural projection and formalisation 
facilities.  
When failures occur in a system, observations are 
analysed using the system model to generate a set of 
possible failures. A failure implicates one or more of 
system components and explains all the observed 
measurements: deviating and normal. Generally, 

failures can be characterized as: permanent or 
intermittent. The permanent failures can be divided 
into two major kinds: progressive or abrupt. The 
type of failures can be classified as: sensor failures, 
actuator failures, process failures and control loop or 
controller failures. 
In this paper, a quick review of major approaches of 
failure diagnosis of DES is presented. Since not 
every system is diagnosable, these approaches define 
a notion of diagnosability based either on event, on 
state or both depending on their model and the type 
of failures: permanent or intermittent, that they must 
detect and diagnosed. Then a method to diagnose 
DES is introduced. This method is modular and 
decentralized. Before applying this method to 
diagnose DES, an algorithm is used to determine if 
the process is diagnosable according to the 
observable events and for the set of failures to be 
isolated. If the system cannot be diagnosed, then 
sensor maps must be modified in order to provide 
the diagnosability property to the system. Finally, an 
example of a manufacturing system is used to 
illustrate the diagnosis method with the 
diagnosability algorithm.  
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2 FAILURE DIAGNOSIS 
APPROACHES  

There is a great deal of methods for designing and 
developing an automated diagnosis system 
(Ramdage, 1987), (Su, 2004), (Wang, 2000), 
(Cassandras, 1999). A common feature of these 
methods is the use of a model to specify the correct 
behaviour of the system and then to analyze the 
observations of the system current operating state to 
detect a failure. The choice of one of these methods 
depends on several factors as: the dynamic of the 
system (discrete, continuous and hybrid), 
implementation standpoint (on line, off line), 
information representation (quantitative, qualitative), 
system complexity (large or simple) and the depth of 
available information about the system 
specifications and behaviour (structural, analytical 
and heuristic knowledge). 
We will focus on the DES failure methods. They can 
be classified according to the structure of their plant 
and diagnoser models into 3 main categories: 
centralized, decentralized and distributed structures. 

3 STRUCTURE OF DES FAILURE 
DIAGNOSIS METHODS 

There are three main structures of plant and 
diagnoser models of DES: 
    1. Centralized approaches: There is one 
centralized system model associated with one 
centralized diagnoser, which collects observations, 
then makes a final decision about the target system’s 
fault status. In (Zad, 1998), we can find an example 
of these approaches. 
    2. Decentralized approaches: There is one 
centralized system model associated with several 
local diagnosers, each of which receives 
observations from a specific set of sensors and 
makes local diagnosis decision based on such local 
observations. A very limited communication is 
permitted through a centralized coordinator to solve 
the problem of the possible ambiguity between local 
diagnoser decisions. In (Sampath, 1994), an example 
belongs to this category.  
    3. Distributed approaches: The system consists of 
several local components, and is associated with 
several local diagnosers, each of which is usually 
responsible for a specific local component. Since 
neither a centralized system model nor a centralized 
coordinator exists, a pure concurrent communication 
among local diagnosers is necessary. In (Su, 2004), 

(Holloway, 1994), we can find an example 
belonging to this category.  

4 DES DIAGNOSABILITY 
NOTIONS 

The DES failures diagnosis methods can be divided 
into two main categories: event-based methods and 
state-based methods. In event-based methods, 
failures are modelled as execution of certain faulty 
events. The DES plant representation is based on a 
finite-state automaton. This model accounts for the 
normal and failed behaviour of the system. All 
information relevant to the diagnosis including 
sensors information is captured in the event set of 
the model. Typically, the observable events in the 
system are one of the following: commands issued 
by the supervisor and sensor readings immediately 
after the execution of the above command, and 
changes of sensor readings. The unobservable events 
are failure events or other events which cause 
changes in the system state not recorded by sensors. 
This model is obtained by a product composition of 
finite-state machines models of individual system 
components. 
A diagnoser is designed to decide whether the 
original behaviour contained a fault or not in basing 
on sequences of observable events. The diagnoser 
should announce a fault at most n steps after the 
fault occurred. Once a fault is announced, the 
diagnoser cannot stop announcing it (Sampath, 
1994).  
To enhance the diagnosability, the above framework 
is extended to dense-time automata (Tripakis, 2001). 
This extension is useful since it permits to model 
plants with timed behaviour. It also allows 
diagnosers to base their decisions not only on the 
sequences of observed events, but also on time 
delays between these events. 
An event-based method is proposed in (Garcia, 
2003) for monitoring and diagnosis of 
manufacturing systems. To detect a special event 
(failure), a monitoring observer (agent) analyzes 
discrete event signals triggered by entities as they 
transit through the monitored system. In (Holloway, 
1994), (Deepa, 2000) the authors present an 
approach to fault monitoring in manufacturing 
systems allowing the modelling of process in which 
both single-instance and multiple-instance 
behaviours are exhibited concurrently. The timed 
sequence events generated by the DES under 
supervision is compared with a set of specifications 
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of normal functioning called templates. These 
templates are suitable for manufacturing systems 
and can operate independently in parallel.          
An equivalent state-based approach is considered 
where the occurrence of a failure is modelled as 
reaching of certain faulty states (Lin, 1994). This 
approach uses a general model for both types of 
diagnosis: off-line and on-line. For on-line, a 
deterministic Moore automaton with partial state 
observation and no event observation is used while 
in off-line diagnosis a nondeterministic Mealy 
automaton with no state observation and partial 
event observation. 
In (Zad, 2003) a based state model to realize the 
passive diagnosis was proposed. The state set of 
system is partitioned according to system condition 
(failure status). A diagnoser, based on finite state 
automata, estimates the conditions in using the 
sequence events and state outputs. 
In (Philippot, 2005), we have proposed a method to 
realize the diagnosis of DES. In the next, we define 
an algorithm to determine if the system is 
diagnosable, this algorithm is adapted for our 
method and it limits the number of states necessary 
to detect actuator-sensor failures as we will see later. 

5 PROPOSED APPROACH TO 
FAILURE DIAGNOSIS 

In (Philippot, 2005), a model-based approach to 
diagnose DES is proposed. A mathematical model G 
must be constructed to define how system states 
change due to event occurrences. The model is 
decentralized: the system consists of several local 
components (Gi, i = 1 .. n) with a coordinator to 
realize a minimum of communication between these 
local components. The diagnoser model is 
distributed: several local diagnoser (Di, i = 1 .. n) are 
constructed, each one of them is usually responsible 
for a specific local component. The goal of the use 

of decentralized model and a distributed diagnosis is 
to reduce the spatial explosion problem at the design 
stage and to facilitate the localisation of default 
elements. 
A notion of diagnosability is defined since not every 
system is diagnosable. This notion depends on the 
partition required (failures to isolate) and on the 
observable events.  
To enhance the diagnosability, time is integrated to 
this approach. Fuzzy functions, modelling the 
minimum and maximum expectation moments 
accepted for an event to take place, are computed. 
The use of fuzzy intervals is useful to better take 
into account the imprecision and uncertainty 
attached to the calculation of these moments and to 
better model the tractability which can be used to 
realize a prognostic, particularly useful for the 
progressive failures. 
This approach uses different representation tools 
(automata, rules, algebraic and mathematical 
equations, ..) according to the available information. 
The goal is to enrich the model in using all the 
available information sources with a suitable 
representation tool to be able to realize the 
diagnosis. These sources are (see figure 1): 

• functional information contained in the 
process schedule conditions, 

• structural information coming from the 
process itself and the sensors-actuators 
spatial distribution, 

• symbolic information given by experts 
and/or previous experience obtained by a 
learning set of previous functioning, 

• temporal information coming from the 
space and temporal parameters of process 
actuators and sensors. 

For this approach, three models are defined: plant 
control and diagnoser models. 

5.1 Plant model 

A plant model is divided into several components. 
Each model Gi and corresponding language Li 
describe the logical, untimed behaviour of the 
monitored system. G = (M, ∑c) where M is a Moore 
automaton: M = (∑, Q, Y, δ, h) : ∑ is the set of finite  
events, Q is the set of states, Y is the output space,   
δ : ∑ x Q → Q is the state transition function. δ(σ, q) 
gives the set of possible next states if σ occurs at q. 
h: ∑ x Q → Y is the output function. H(σ, q) is the 
observed output when σ occurs at q. ∑c ⊆ ∑ is the 
set of controllable events. ∑o ⊆ ∑ is the set of 
observable events where ∑c ⊂ ∑o. An automaton is 
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used for each model. This automaton takes into 
account all the observable events. The detailed 
explication of the construction of this model can be 
found in (Philippot, 2004), (Philippot, 05). 

5.2 Control model  

The controller model is constructed in using a 
Sequential Function Charts. This letter reflects the 
functional information corresponding to the schedule 
conditions for all system components. The SFC is 
chosen to model the controller because it is well 
adapted for industrial applications especially 
manufacturing systems. 

5.3 Diagnoser model 

The set of failures to be detected and isolated must 
be defined as well as the type of these failures. Let 

{ }∑=
f

nfff ,..,, 21  be the set of failures to be 

detected and { }
nfffN SSSS ,..,,,

21
=Π  denotes the 

set of normal partition and the type of failures to be 
isolated: sensor or actuator and which sensor or 
actuator. Additionally, the nature of failure must be 
defined: permanent or non-permanent. 
Before constructing the diagnosers, a notion of 
diagnosability must be defined to determine if the 
system is diagnosable or not. A system is detectable 
according to a set of observable events and a set of 
partition iff each normal state can be distinguished 
from all the failures: 
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Then, the system is diagnosable if we can 
distinguish each partition of the set Π. This isolation 

must be determined within a bounded number of 
events and a bounded time: 

 
)()(:, qhqhSqq AN ′≠∈′∀   (2) 

 
Let us take the following example (see figure 2) of a 
process which has 4 normal states SN = {1, 2, 3, 4} 
with the observable events { }4321 ,,, αααα=Σo . 

The partition to be identified is                          
SAN = {5, 6, 7, 8, 9,10, 11, 12} which correspond to 

the failure events { }∑ f
ffffffff 87654321 ,,,,,,, .  

The outputs of each state, thank for the sensors are: 
H = {h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11, h12}. 
The figure 2 shows the functional model 
corresponding to the product of the model plant with 
the control model, in solid lines, and the diagnoser 
model in dotted lines. 
The failure events: f1, f3, f5 and f7, indicate an 
equipment failures, actuator, as stuck on or stuck off. 
These events are non-observables and must be 
detected either by an observable event which entails 
a state with an output different from the estimated 
one, in the case of stuck on, or by the fuzzy 
functions of expected events occurrence instants in 
the case of stuck off. The other failure events denote 
the sensor failures. These events can be observable 
or non-observable. In the case of observable ones, 
the failure is detected at once without any delay. 
This fact is important for the functioning of the SFC 
in order to permit the evolution of the command. 
Indeed our approach requires a validate sensor 
values before permitting a new command. In the 
case of non-observable events, as in the figure 2, the 
failure must be detected in using only the sensors 
outputs. In this case the non-observable failure 
events correspond to a sensor stuck on, level 1, or 
stuck off, level 0. The number of sensors must be 
enough to distinguish all the states of normal and 
abnormal states. 
We can find that our approach combines event and 
state based approaches in order to maximise the 
diagnosability power with a minimum number of 
sensors. In addition the time is integrated and 
modelled with fuzzy intervals to enhance this 
diagnosabilty power and to take into account the 
imprecision and uncertainty of time occurrence 
events. 
Let us explain our algorithm to know if the system 
represented by the figure 2 and for 

{ }4321 ,,, αααα=Σo  and SAN = {5, 6, 7, 8, 9, 10, 

11, 12} is diagnosable. The first step of our 
algorithm is to construct a matrix M(nxm) where n is 

Figure 2: Functional and diagnoser models 
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the number of observable events and m is the 
number of normal states. Then, we determine the set 
of events ∆k produced by the same sensor k. Let 
suppose that for the sensor 1: ∆1 = {α1, α4}and for 
the sensor 2: ∆2 ={α2, α3}. For each event, we put 0 
for all the states sources of this event as well as the 
events produced by the same sensor. We put 1 for 
the other colons. This matrix will be used to know if 
a system is detectable or not and then if it is 
diagnosable or not. Indeed, the event, α2, indicates 
that the state 1 was normal, but we need to wait the 
event α4 to know if the state 2 was normal. For the 
example of the figure 2, we can find: 
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The application of (1) on (3) we can find that the 
system is detectable iff: 

1)..1:)..1:(( === mjniMORAnd ij  (4) 

If the system is detectable, the application of (3) on 
(2) determines if the system is diagnosable : 

1)..1:)..1:(( === nimjMXORAnd ji  (5) 

We can find that the system of the figure 2 is 
diagnosable. To calculate the delay to realize the 
diagnosis, we use the following equation: 

)..1:)..1(1( nimjMNOMaxDelay ji ===  (6) 

where NO1i is the number of ones in each line i. As 

an example, to detect and localize a failure in the 
state 2, failure f4, we need to wait that the event α4 
takes place. Thus the delay is equal to 2 observable 
events. In applying the same manner for the other 
lines, we can find that the system is 2-diagnosable 
for all the failures of the figure 2. 

6 APPLICATION OF THE 
PROPOSED METHOD 

We will apply the notion of diagnosabilty to the 
following example of a wagon with an electric 
actuator with two senses of movements: left and 
right, and a double effect cylinder: up and down. 
Three sensors a, b and c are used to determine the 
wagon position and two sensors fcr and fcs to 
determine the cylinder position as it is illustrated in 
figure 3. The schedule conditions are well defined 
and the following hypotheses are verified: 

• There is one product (i.e. one wagon), each 
actuator has its proper sensors and each 
sensor is used by one actuator. The relax of 
this hypothesis will be study in other 
paper, 

• An accepted response time is defined for 
each actuator as well as for the process by 
the designer, 

• The wagon inertia is null. 
The figure 4 shows the functional models of the 
actuator (wagon) and the double effect cylinder 
according to the SFC (Philippot, 2005). 
The diagnosability matrix for the actuator, Mact, and 
the cylinder, Mcyl, for the sensor failures are: 
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We can find from Mact, and Mcyl, that the cylinder is 
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Figure 3: Exemple of application 
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diagnosable and it is 2-diagnosable system and the 
actuator (wagon) is diagnosable and it is 6-
diagnosable system. As an example, while being in 
the state 11, figure 4, a failure has occurred in the 
sensor a. We need to wait the occurrence of the 
event b of the state 4 to detect and isolate this 
failure. 

7 CONCLUSION 

In this paper, an algorithm to determine if a Discrete 
Event System (DES) is diagnosable or not, for a set 
of failures and according to a set of observable 
events, is presented. This algorithm treats the case of 
failures modelled by non-observable events for both 
actuators and sensors. The failures modelled by 
observable events can be also treated by this 
algorithm and the detection and isolation will be 
realized without any delay. This algorithm uses the 
notion of events to determine if a permanent failure 
has occurred. At the same time and to find a remedy 
to the problem of initialization of the system and the 
diagnoser, it uses the notion of state, to determine if 
a failure has occurred before the initialization of the 
diagnoser. This diagnosis is realized within a 
bounded delay in basing on the sensors outputs and 
the events sequences and their occurrence times. 
This algorithm was tested successfully on an 
example of manufacturing system. Firstly, this 
algorithm has shown that the system is diagnosable 
for the set of sensors and actuators failures and 
according to the set of observable events. Then a 
method to diagnose DES has applied, it has 
diagnosed several simulated failures within a 
bounded delay maximally equal to 6 events.  
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