
TRACKING OF A UNICYCLE-TYPE MOBILE ROBOT USING
INTEGRAL SLIDING MODE CONTROL

Michael Defoort, Thierry Floquet and Wifrid Perruquetti
LAGIS UMR CNRS 8146, Ecole Centrale de Lille

BP 48, Cite Scientifique, 59 651 Villeneuve-d’Ascq, France

Annemarie Kokosy
LAGIS UMR CNRS 8146, ISEN

41 bvd Vauban, 59 046 Lille Cedex, France

Keywords: Nonholonomic mobile robot, sliding mode, tracking control, unmatched uncertainty.

Abstract: This paper deals with the tracking control for a dynamic model of a wheeled mobile robot in the presence of
some perturbations. The control strategy is based on integral sliding mode. Simulations illustrate the results
on the studied mobile robot.

1 INTRODUCTION

One of the motivations for tackling the tracking
of nonholonomic systems is the large number of
applications mobile robots (Laumond, 1998). One
difficulty for motion planning and control of a
car-like robot arises from the so-called nonholonomic
constraints imposed by the rolling wheels.
Obstacles to the tracking of such systems are the
uncontrollability of their linear approximation and
the fact that the Brockett’s necessary condition
to the existence of a smooth time-invariant state
feedback is not satisfied (Brockett, 1983). To
overcome those difficulties, various methods have
been investigated: homogeneous and time-varying
feedbacks (Pomet, 1992; Samson, 1995), sinu-
soidal and polynomial controls (Murray and Sastry,
1993), piecewise controls (Hespanha and Morse,
1999; Monaco and Normand-Cyrot, 1992), flatness
(Fliess et al., 1995), backstepping approaches (Jiang,
2000) or discontinuous controls (Floquet et al., 2003).

In this paper, it is aimed to design a control law for
the unicycle-type mobile robot which:

• solves the disturbance rejection problem for
bounded matching perturbations and some un-
matched disturbance from the initial time instance,

• is a good compromise between performance and
robustness,

• takes into account the actuator dynamics.

This objective will be achieved by using integral
sliding mode control law. Sliding mode control

(Edwards and Spurgeon, 1998) is a powerful method
to control nonlinear dynamic systems operating
under uncertainty conditions. A drawback of such a
control is that the trajectory of the designed solution
is not robust on a time interval preceding the sliding
motion. In (Utkin and Shi, 1996; Poznyak et al.,
2004; Cao and Xu, 2004), a new sliding mode
design concept, namely integral sliding mode (ISM),
without any reaching phase was proposed. Thus, the
robustness can be guaranteed throughout an entire
response of the system starting from the initial time
instance.
Here, the proposed controller is based on the integral
sliding mode in order to solve the tracking problem
in presence of matching and some unmatching
perturbations.

The outline of this paper is as follows. Section II
formulates the tracking problem. Then, the use of in-
tegral sliding mode, in section III, enables to solve the
problem of tracking the reference trajectory in spite of
perturbations. Finally, in section IV, numerical exam-
ples illustrate the effectiveness of the proposed con-
troller.

2 PROBLEM STATEMENT

In this paper, we consider the unicycle-type robot
which behavior can be described by the following sys-
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tem (see (de Wit and Sordalen, 1992) for details):⎧⎨
⎩

ẋ = u cos(θ) + p1(X)
ẏ = u sin(θ) + p2(X)
θ̇ = v + p3(X)

, (1)

where X = [x, y, θ] is the state, x and y are the coor-
dinates of the center gravity of the robot, θ is the ori-
entation of the car with respect to the x-axis. p1(X),
p2(X) and p3(X) are some additive perturbations due
to parameter variations, unmodeled dynamics or ex-
ternal disturbances assumed to be smooth enough and
thus bounded over some compact set. u and v refer
respectively to the applied linear and the angular ve-
locities (see Fig. 1).

Figure 1: Unicycle robot kinematic

Discontinuous control laws have been developed in
the literature in order to stabilize system (1) (Astolfi,
1996; Floquet et al., 2003). The main criticism when
applying such strategies to a mobile robot would be
the action of a discontinuous control directly on the
mechanical part of the system (namely u and v). The
purpose of the paper is to define a sliding mode con-
trol acting on the electrical parts of the system (which
is more realistic since power converters are discontin-
uous actuators by nature). Taking into account the ac-
tuator dynamics remains to include some dynamical
extensions (cascaded integrators) in the system (1):⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ = u cos θ + π1

ẏ = u sin θ + π2

θ̇ = v + π3

u̇ = F
m − α1u + π4

v̇ = τ
J − α2v + π5

Ḟ = P + π6

, (2)

where m is the mass, J is the inertia, α1, α2 are pos-
itive scalars coming from the actuator dynamics, F
is the force, X = [x, y, θ, u, v, F ]T and U = [P, τ ]T
are respectively the new state and the control input.
π = [π1, . . . , π6]T is an additive perturbation (π1, π2,

π3 and π4 are sufficiently smooth function of time).

Assume that the desired, feasible trajectory Xr =
[xr, yr, θr, ur, vr, Fr]T satisfies the following dy-
namics where Ur = [Pr, τr]T is the reference input.⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋr = ur cos θr

ẏr = ur sin θr

θ̇r = vr

u̇r = Fr

m − α1ur

v̇r = τr

J − α2vr

Ḟr = Pr

. (3)

The output tracking error is denoted by:

e = [e1, e2]T = [x − xr, y − yr]T . (4)

Our control purpose is to design an appropriate
controller such that the vehicle (2) is forced to
asymptotically track the desired trajectory (3) from
some initial tracking errors in spite of the perturba-
tions. In fact, the goal is to asymptotically stabilize
the tracking errors e1 and e2 and their time derivatives
to zero.

3 CONTROLLER DESIGN FOR
TRAJECTORY TRACKING

Sliding mode control, which consists in constraining
the motion of the system along manifolds of reduced
dimensionality in the state space, is quite popular in
nonlinear control systems community. One can refer
to (Perruquetti and Barbot, 2002) for further details
about this theory. Its robustness properties with re-
spect to matching perturbations and its discontinuous
character also motivated the authors to consider such
an approach for the tracking of the nonholonomic
system (2).

Let us differentiate the tracking errors e once with
respect to time:

ė =
[
u cos θ − ẋr

u sin θ − ẏr

]
+

[
π1

π2

]
(5)

Since neither P nor τ appears in (5), one can differ-
entiate further with respect to time until they appear:

ë =

⎡
⎢⎢⎢⎣

( F
m − α1u) cos θ
−uv sin θ − ẍr

( F
m − α1u) sin θ
+uv cos θ − ÿr

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

π̇1 + π4 cos θ
−uπ3 sin θ

π̇2 + π4 sin θ
+uπ3 cos θ

⎤
⎥⎥⎥⎦ (6)

and

e(3) = ξ(X)
[
P
τ

]
+

[
φ1(X)
φ2(X)

]
+

[
K1,3(X)
K2,3(X)

]
(7)
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with

ξ(X) =
[

cos θ
m −u sin θ

J
sin θ
m

u cos θ
m

]
,

[
φ1(X)
φ2(X)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−x
(3)
r − α1( F

m − α1u) cos θ
−2v( F

m − α1u) sin θ
+uα2v sin θ − uv2 cos θ

−y
(3)
r − α1( F

m − α1u) sin θ
+2v( F

m − α1u) cos θ
−uα2v cos θ − uv2 sin θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[
K1,3(X)
K2,3(X)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−α1π4 + π̇4) cos θ − 2vπ4 sin θ
−2π3( F

m − α1u + π4) sin θ
−u(π5 + π̇3) sin θ − 2uvπ3 cos θ

(π6 − uπ3
2) cos θ+π̈1

(−α1π4 + π̇4) sin θ + 2vπ4 cos θ
+2π3( F

m − α1u + π4) cos θ
+u(π5 + π̇3) cos θ − 2uvπ3 sin θ

(π6 − uπ3
2) sin θ+π̈2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The decoupling matrix is ξ(X) and

det(ξ(X)) =
u

Jm
.

So, a singularity appears at u = 0. Therefore, the
linear velocity must be ensured to be different from
zero.
From (7), let us design[

u1

u2

]
= ξ(X)

[
P
τ

]
+

[
φ1(X)
φ2(X)

]
(8)

From (5), (6), (7) and (8), two linear sub-systems
are obtained, for i ∈ {1, 2}:⎡

⎣ ėi

ëi

e
(3)
i

⎤
⎦ =

[0 1 0
0 0 1
0 0 0

] [
ei

ėi

ëi

]

+

[0
0
1

]
ui +

[
Ki,1

Ki,2

Ki,3

]
(9)

where Ki = [Ki,1,Ki,2,Ki,3]T are external distur-
bances resulting from (5), (6) and (7):[

K1,1

K2,1

]
=

[
π1

π2

]
,[

K1,2

K2,2

]
=

[
π̇1 + π4 cos θ − uπ3 sin θ
π̇2 + π4 sin θ + uπ3 cos θ

]
.

Using Ei = [ei, ėi, ëi]T , system (9) can be des-
cribed in a compact form:

Ėi = AEi + Bui + Ki, (10)

The perturbations Ki, i ∈ {1, 2}, are split as fol-
lows:

Ki = hi + ki

where hi is smooth uncertainty representing the
perturbations which satisfy the so called ”standard
matching condition”, that is to say hi ∈ span(B),
i.e. hi = Bqi and ki represents the unmatched part.

Assumption: qi and ki are bounded by known non-
linear functions as follows:

‖ qi ‖ ≤ �i(Ei),
‖ ki ‖ ≤ ρi(Ei).

For system (10), the control law is defined as fol-
lows

ui = ui,0 + ui,1. (11)

where ui,0 is the ideal control and ui,1 represents the
ISM part which will be designed to be discontinuous
in order to reject the perturbation.

The first part of the control design is to find a con-
trol law ui,0 such that the ideal closed-loop system
Ėi = AEi + Bui,0 is globally asymptotically stable.
The following control enables to stabilize the tracking
errors:

ui,0 = −βiEi, βi = [βi,1, βi,2, βi,3] (12)

The constant real coefficients {βi,1, βi,2, βi,3} are
chosen appropriately such that the ideal system is
globally stable.

However, with the control law (12), the system
is not robust with respect to the perturbations Ki

(see Section 4, Fig. 3). So, to this first controller,
a discontinuous term is added based on ISM to en-
sure the desired performance despite the disturbances.

Define the sliding function σi as:

σi = σi,0 + zi (13)

The first term σi,0 is a linear sliding surface designed
as follows:

σi,0 = DiEi

where Di ∈ R
1×3 is constant and is selected such

that the matrix DiB is nonsingular (for instance,
Di = B+ = [0, 0, 1] where B+ is the pseudo-inverse
of B).

The second term z induces the integral term. The
main idea of ISM (Utkin and Shi, 1996) is to elim-
inate the reaching phase by enforcing sliding mode
throughout the entire system response. To achieve the
stabilization of system (10), the equivalent control of
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ui,1 (denoted ui,1eq), which describes the system tra-
jectory when sliding mode takes place in (13), should
fulfill:

ui,1eq = −qi − [DiB]−1Diki. (14)

Furthermore, in sliding mode, along the system tra-
jectories, one should have:

σ̇i = DiĖi + żi

= Di (AEi + Bui + Ki) + żi

= Di(AEi + Bui,0 + Bqi + ki)
+DiBui,1 + żi

= 0

(15)

Conditions (14) and (15) holds if:

żi = −Di(AEi + Bui,0)
zi(0) = −σi,0(0) (16)

That is to say:

zi = −DiEi(0) −
∫ t

0

(Di(AEi + Bui,0))ds

where the initial condition z(0) is determined from
σi(0) = 0. Hence, the sliding mode occurs from the
initial time instance.

The control ui,1 in (11) is defined to enforce sliding
mode along the manifold (13) and is of the following
form:

ui,1 = −Mi(Ei) sign (DiBσi) (17)

where the switching gain satisfies

Mi(Ei) > �i(Ei) + ‖[DiB]−1Di‖ρi(Ei). (18)

Proposition: The controller defined in (11), (12),
(17) solves the tracking problem if the unmatched per-
turbation satisfy, for i = 1, 2:

‖I − B[DiB]−1Di‖ρi(Ei) < λi,min‖Ei‖ (19)

where λi,min is the lowest eigenvalue of the matrix
A − Bβi.

Proof: Let us choose the following Lyapunov func-
tion

Vi =
1
2
σ2

i

From the choice of the switching gain (18), the time
derivative of this function can be expressed as:

V̇i = σi(Di(AEi + Bui + hi + ki)
−Di(AEi + Bui,0))

= σiDi(Bui,1 + Bqi + ki)

= σiDiB(ui,1 + qi + [DiB]−1Diki)

≤ −ηi|DiBσi|, ηi ∈ R
+∗

≤ 0

Thus, the trajectory evolves on the manifold σi = 0
from t = 0 and remains there in spite of the perturba-
tions.

Since, in sliding mode, (14) is satisfied, the closed
loop dynamics becomes:

Ės
i = AEs

i + Bui,0 + {I − B[DiB]−1Di}ki

where the subscript s denotes the state vector in
sliding mode.

Choosing a Lyapunov function as

Vs =
2∑

i=1

(Es
i )T Es

i

2
,

one gets,

V̇s =
2∑

i=1

(Es
i )T (AEs

i + Bui,0)

+
2∑

i=1

(Es
i )T (I − B[DiB]−1Di)ki

≤ −
2∑

i=1

λi,min‖Es
i ‖2

+
2∑

i=1

‖Es
i ‖‖I − B[DiB]−1Di‖ρi

According to (Qu, 1998), the tracking errors is
globally asymptotically stable if the unmatched
perturbation satisfy (19).

Remark: As the system (2) without perturbation
(π1 and π2 are supposed to be vanishing) is flat (Fliess
et al., 1995), the tracking errors in orientation will
converge to zero. Indeed,

θ − θr = atan
(

ẏ

ẋ

)
− atan

(
ẏr

ẋr

)

tends to zero when ẋ → ẋr and ẏ → ẏr.

4 SIMULATION RESULTS

4.1 Tracking problem

In this simulation, the desired trajectory is circular.
The mobile robot is required to track, from an initial
point X(0), the circular trajectory:

xr(t) = R cos(at)
yr(t) = R sin(at)
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with R = 20 and a = 0.01π which is represented by
the dashed line in the following figures. The reference
orientation can be deduced from ẋr and ẏr, i.e.

θ̇r = a.

The initial state X(0) for the vehicle is:

x(0) = 22, y(0) = −1, θ(0) =
π

2
+ 0.01,

u(0) = 0.2, v(0) = 0, F (0) = 0.

4.1.1 Simulation without uncertainties

Using the control inputs defined in (12), the tracking
errors tend to zero. The tracking problem was si-
mulated with the following design parameters: for
i ∈ {1, 2}, βi,1 = 0.024, βi,2 = 0.26 and βi,3 = 0.9.
[−0.2,−0.3,−0.4]T are the eigenvalues of the dy-
namics of the closed-loop system. The performances
without any perturbation are depicted in Fig. 2.
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Figure 2: Evolution of variables and inputs without noise

4.1.2 Simulation with uncertainties

Nevertheless, when noise is added, the errors are not
stabilized (Fig. 3). Therefore, control (12) is not ro-
bust with respect to the perturbations. In order to re-
ject noise, the control law is divided into two parts
(11): the ideal control (12) and the discontinuous law
described by (17). Perturbations π5 and π6 are noise
of mean 0.1 and of variance 0.1. The matching noise
is bounded and the disturbances ki = [Ki,1,Ki,2, 0]T
is the unmatched perturbation which satisfy (19) (i.e.
ρi < 0.2‖Ei‖). In order to avoid the chattering phe-
nomenon, the function signum in (17) is replaced by
2
π atan (εσi) with ε � 1. Using the control law (11)
with Di = [0, 0, 1], the tracking errors tend to zero
(Fig. 5) and the system (2) is robust with respect to
perturbation from the initial time (ie. sliding function
σi represented in Fig. 4 is equal to zero from the ini-
tial time).
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Figure 3: Evolution in the phase plane (x, y) with uncer-
tainties without ISM
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Figure 4: Evolution of the sliding function σ1

5 CONCLUSION

The problem of robust control design has been con-
sidered for the tracking of a unicycle robot system
with bounded disturbances and uncertainties. The
proposed controller includes terms corresponding to
an integral sliding mode component and enables to
obtain continuous velocity and acceleration inputs for
some practical applications on mechanical systems.
The integral sliding mode component compensates
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Figure 5: Evolution of variables and inputs without noise
using the proposed controller

for the matching perturbation beginning from the ini-
tial time and for some unmatched disturbances. Simu-
lations on a unicycle-type mobile robot illustrated the
performance of the controller.
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