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Abstract: In this paper we present a new method for the robust estimation of the trifocal tensor, from a 
series of medical images, using finite-multiple evolutionary agents. Each agent denotes a subset 
of matching points for parameter estimation, and the dataset of correspondences is considered as 
the environment in which the agents inhabit, evolve and execute some evolutionary behavior. 
Survival-of-finite-fitness rule is employed to keep the dramatic increase of new agents within 
limits, and reduce the chance of reproducing unfit ones. Experiments show that our approach 
performs better than the typical methods in terms of accuracy and speed, and is robust to noise 
and outliers even when a large number of outliers are involved. 

1 INTRODUCTION 

Within recent years advances in the field of digital 
imaging have played a key role in medical industry.  
Medical imaging has progressed significantly 
throughout the years from X-Ray, CAT and PET 
scans to now using endoscopic cameras. Three-
dimensional reconstruction methods are central to 
many new applications to medical imaging.  In this 
research, we wish to generate 3D views of an 
endoscopic procedure, via a head up display unit, in 
order to enhance features, in particular obscured 
features, to the surgeon.   However, the generation 
of exact 3D models from uncalibrated endoscopic 
camera image sequences is a challenging problem.   

To generate these three dimensional views we 
need to know accurately the geometric information 
of the endoscopic camera.  The trifocal tensor is the 
geometric entity that relates 3D points to three 2D 
views.  In order to determine the trifocal tensor, for 
exact 3D reconstruction, we must extract interest 
points from the three images using the corner 
detector and then match potential features between 
these images.   

In the past years, accurate and robust estimation 
of trifocal tensor has become an important and 

productive research area. The well-known robust 
methods are RANSAC (Random Sample Consensus 
Paradigm) (Torr, 1995), and its improvement 
MLESAC (Maximum Likelihood Sample 
Consensus) (Torr, 1997). Both methods randomly 
sample a subset of correspondences for geometric 
parameter estimation.  However, the MLESAC 
method also employs additional statistical measures 
for the final solution. Both methods can deal with 
image noise and outliers, which are in gross 
disagreement with a specific postulated model. 
However, when a large number of outliers are 
involved they perform poorly.  

Messy genetic algorithm (MGA) has also been 
used for trifocal tensor estimation (Hu, 2002).  This 
method uses genes to denote triplets of 
correspondences and employs a genetic mechanism 
to improve the effectiveness of outlier detection. 
However, this method does not exploit the intrinsic 
parallelism between corresponding images and is 
therefore computational intensive.  This is a defect 
of nearly all GA-based applications.  

Recently, the authors proposed a simple 
evolutionary agent-based approach (SEA) to the 
problem of trifocal tensor estimation (Hu, 2004).  
This was found to improve the robustness of 
parameter estimation and reduce the computational 

202
Hu M., McMenemy K., Ferguson S., Dodds G. and Yuan B. (2005).
MULTIPLE VIEW GEOMETRY ESTIMATION BASED ON FINITE-MULTIPLE EVOLUTIONARY AGENTS FOR MEDICAL IMAGES.
In Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Robotics and Automation, pages 202-209
DOI: 10.5220/0001169802020209
Copyright c© SciTePress



 

expense.  However, through experimentation it was 
found that the simplicity of evolutionary operators 
caused the number of new generated agents to 
increase almost exponentially at early stages.  
Moreover, if there is no rule about termination, the 
method will spend a long time on convergence. 

In this paper we present a new method for robust 
estimation of the trifocal tensor, from a series of 
medical images, using finite multiple evolutionary 
agents (FMEA).  The dataset of correspondences is 
viewed as a one-dimensional cellular environment in 
which the agents inhabit and evolve. Each agent 
represents a subset for computing a unique trifocal 
tensor, and will execute some evolutionary behavior 
e.g. reproduction and diffusion.  In this new method, 
the survival-of-finite-fitness rule is introduced to 
limit the increase of new agents. During the 
diffusion process, after the comparison with their 
parents, the successful agents are sorted by their 
costs, and the best set of agents is kept active for 
evolutionary processing. Experiments show that the 
new FMEA approach performs better than the 
original SEA approach in terms of accuracy and 
robustness. This scheme provides a richer population 
with better agents and more exploration to avoid 
unfavorable local minima than SEA, and decreasing 
the computation expense greatly. 

The organization of the paper is as follows. In 
section 2, we give a brief introduction to multiple 
view geometry estimation. Then a new approach 
based on evolutionary agents is presented in detail, 
including agent definition, cost function and 
evolutionary behavior. Section 4 deals with the 
experimental results obtained from synthetic data 
and real images. Finally, the conclusions are drawn 
in section 5. 

2 BACKGROUND OF MULTIPLE 
VIEW GEOMETRY 
ESTIMATION 

Consider a single point M  in space projected onto 
 views with camera matrices P , , 3 P′ P ′′  with 

image points m , , m′ m ′′  respectively. Note that 
 for some scalar . Consider 
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where  is the i th row of . These two equations 
can be written more compactly as follows: 
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where 3 ,2 ,1=j  and 2 ,1=µ . Therefore, the compact 
form we obtain is described as follows: 
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where µ  is a free index (i.e., we obtain one equation 
per range of µ ). Similarly, let  for the 
third view 
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where 2 ,1=ρ  is a free index. We can eliminate λ  
from (1) and (2) and obtain a new equation: 
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Hence, we have four trilinear equations (note that 
2 ,1, =ρµ ). In a more explicit form, these 

trilinearities look like: 
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Equation (4) was first introduced by Shashua in 
1995, from where we can see that the trifocal tensor 
has 27 elements, but only their ratios are significant, 
leaving 26 coefficients to be specified. And each 
triplet of matching points can provide four 
independent linear equations for the elements of the 
tensor. Therefore the tensor can be computed from a 
minimum of 7 triplets using Least-Squares methods.  
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Figure 1: Agent representation 

 
3 MULTIPLE VIEW GEOMETRY 

ESTIMATION WITH FINITE 
MULTIPLE EVOLUTIONARY 
AGENTS 

According to the description above, ideally every 
possible sub-sample (seven correspondences) of all 
the matching points n  should be considered to 
obtain the optimal result. However this is usually 
computationally infeasible for most applications. So 
we apply finite multiple evolutionary agents to 
explore large uncertainty-parameter space and avoid 
getting trapped at a local minimum. 

3.1 Agent definition  

Suppose that S  is the dataset of correspondences 
iii . It may be viewed as a 

one-dimensional grid of triplets of matching points, 
and also as an environment in which the agents 
inhabit and evolve. The goal of the evolutionary 
agents in S  is to select the potential good points and 
search the preferred optimal subset. The 
evolutionary agent is defined as follows 

( ){ n}  ,  ,1  |    ,  , L=′′′ mmm i

 
DieDiffRepfmlDaAgent t   ,  ,  ,  ,  ,  , cosV=  

 
V denotes the positions of an agent in S , a 

seven-dimensional position vector, and 
k , , is just the index 

number of correspondence lattice S , as shown in 
Figure 1. In other words, V stands for the subset of 
correspondences for geometry estimation.  denotes 
the age of an agent, that is, the number of diffusion 
steps it has taken; tDcos symbolizes its cost, which 
indicates the adaptability of an agent and can be 
computed using the trilinear constraint obtained 
from the correspondences of V ; represents the 
family index, which indicates where an agent comes 
from. Rep denotes the reproduction behavior; 

represents the diffusion behavior; while Die  
indicates that an agent has a life span. 
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3.2 Cost function  

In this paper, we employ the seven-point method to 
get one possible solution of the tensor, although it 
could be estimated by six-point method (Quan, 
1994). The reasons are as follows. Seven-point 
method is a simple linear approach, while six-point 
method is much complicated which includes 
parameterization of matrices, solving cubic 
constraint and linear equations. Moreover, the 
advantage of agent-based algorithm is that each 
agent performs a simple task, but they work together 
to solve a problem of great complexity by 
communicating and cooperating with each other. So 
the trade-off between accuracy and speed is to 
choose the seven-point method, which does not put a 
heavy burden on agents. 

In order to compare the results of geometry 
estimation obtained from agents, the cost function is 
defined based on the residuals of correspondences 
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i.e., the sum of squared geometric distances between 
the measurements , im im′ ,  and the corrected 
data points , , , the latter obeying the 
trilinear constraint (3) for the estimated tensor . 
It indicates the distinction between the noisy 
measurements and the geometric elements (the true 
or equivalently the corrected data points). Then the 
cost function of an agent is defined by 
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σβ 96.1=  is the threshold for considering the 
inliers, and the standard deviation σ  can be found 
as a maximum likelihood estimate using the median  
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Figure 2: The evolutionary process of Finite Multiple Evolutionary Agent 
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number of parameters. It can be seen that outliers are 
given a fixed penalty, but inliers are scored on how 
well they fit the data. In other words, the main 
consideration is given to the residuals of inliers and 
the outliers make a little contribution to the cost 
function. 

3.3 Evolutionary behavior  

Evolutionary agents adapt to their environment 
mainly by way of two behavioral responses, namely, 
reproduction and diffusion. Letting )( gA  represent the 
set of all active agents in generation g , the 
evolutionary process is detailed in Figure 2. 

(1) Reproduction: In the reproduction process, 
each active agent  will breed a finite number 

br of offspring agents. The larger the value of br , 
the more offspring agents will be created to search in 
the large uncertain parameter space. However the 
computational cost will increase dramatically if no 
parallel processing is applied. It should be pointed 
out that the offspring, , are by no means a 
simple copy of the parent . The differences 
between  and  are mainly in the position 
vectors and . ch  elements of  are 
selected and changed into the index number of  by 

a random number generator. In other words,  
may be viewed as the mutation of his parent , 
and new values, randomly selected numbers in S , 
are introduced to . Therefore the subset of the 
offspring for computing the tensor  is partly 
changed. 

)( gα
m m
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We should emphasize that after the reproduction 
process, the position vector of each agent should be 
checked to ensure the elements are different from 
each other. If the same value is found, it will be 
replaced by a randomly generated one. 

(2) Diffusion: The diffusion behavior plays an 
important role for an agent to search new positions 
in the correspondence lattice. After the reproduction 
process, each agent of generation ( ) , , 
computes the cost using Eq. (5), and compares it 
with that of its parent . If the offspring has the 
cost advantage, it will survive and be appended to 
the active agent set 

1+g )1( +gα

)( gα

A . Its parent, however, will 
become inactive and be removed from the 
environment. If  has a worse performance than 
its parent, it will be deleted at once without any 
chance to search further in the space. If the offspring 

 of the same parent are all failed, their parent 
will be kept active in the environment with its age 
increased by one. Then all the successful agents in 
data set 

)1( +gα

)1( +gα

A  are sorted ascendingly according to their 
cost, and the first best  agents are kept active with the 
removing of the others from the environment, which 

n
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Input: A 1  grid of correspondencesn×
Output: trifocal tensor 
 
begin 

distribute an initial set of agents { } )0(α  in the environment, 
assign the elements of position vector  to the index of  V S
in numerical order  (1 ), , n  ,  ,3  ,2  , L 0)( )0( ←αage
assign the initial agent set to the currently-active agent set: { } )0(α←A , 
compute the cost of agents in the initial set 
select the subset template from the agents in { } )0(α  
while φ≠A  do 
    reproduction process, select element V ,  k

    V  or V , ][Templaterandomk

    diffusion process, 
← k ← ][nrandom

    vanishing process, 
    update subset template, 
endwhile 
compute tensor using the position vector of the best agent, 
return trifocal tensor, 

end 
Figure 3: The algorithm for evolutionary agent-based computation 
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4 EXPERIMENTAL RESULTS 

In this part, our novel approach is compared with 
several typical methods including RANSAC, 
MLESAC, MGA and SEA. In order to analyze the 
effectiveness of subset template, we use SEA+T and 
FMEA+T to denote the methods with templates, this 
discriminating them from SEA and FMEA methods. 

4.1 Experiments with synthetic data 

In the experiments with synthetic data, the 
correspondences are randomly generated by space 
points in the region of  visible to three different 
positions of a synthetic camera: 

3ℜ
]0C[IP   =  

( C stands for camera intrinsic matrix), [ ]tRCP ′′=′    
and [ ]tRCP ′′′′=′′   , where the camera makes  
rotations R ′ and R ′′ , and  translations and t′ t ′′ .  

Here the total number of correspondences is 100, 
and there are only 10 agents in { })0(α . The number 
of agents for initialization may be larger than 10, but 
it will take more time for computation and ten agents 
has been found in practice to be good enough for 
real applications. The experiments are divided into 
two groups: 

(G1): Six different ranges of Gaussian noise are 
added to the projective correspondences, whose 
means are 0 and standard deviation vary from 0.5 to 
3.0 (in steps of 0.5), as shown in Table 1.  
 
 
 



 

Table 1: Residual error under variable variance of noise 

                 Method 
Noise level RANSAC MLESAC MGA SEA SEA+T FMEA FMEA+T 

0.5 1.174 0.865 0.782 0.852 0.824 0.817 0.803 
1.0 2.194 1.389 1.197 1.224 1.185 1.225 1.209 
1.5 3.253 1.546 1.367 1.563 1.489 1.460 1.442 
2.0 4.438 1.790 1.572 1.763 1.712 1.657 1.646 
2.5 5.906 1.923 1.763 1.942 1.825 1.815 1.793 
3.0 7.234 2.341 1.914 2.242 2.026 1.988 1.942 

 

   
(a)                                                                                    (b) 

Figure 4: Residual error under noise-perturbation test, (a) results of all the seven methods, (b) results of genetic algorithm 
and EA-based approaches. 

 

   
(a)                                                                                      (b) 

Figure 5: Residual error under outlier-perturbation test, (a) results of all the seven methods, (b) results of genetic algorithm 
and EA-based approaches. 

 
Table 2: Residual error under different percentage of outliers 

Method 
Outlier 
percentage 

RANSAC MLESAC MGA SEA SEA+T FMEA FMEA+T 

10% 3.734 1.426 1.253 1.286 1.237 1.232 1.231 
20% 4.925 1.532 1.314 1.421 1.395 1.310 1.320 
30% 10.83 1.973 1.724 1.895 1.827 1.755 1.710 
40% 15.72 2.272 1.978 2.263 2.211 2.116 2.018 
50% 34.86 2.925 2.226 2.485 2.406 2.421 2.332 

MULTIPLE VIEW GEOMETRY ESTIMATION BASED ON FINITE-MULTIPLE EVOLUTIONARY AGENTS FOR
MEDICAL IMAGES

207



 

Table 3: Average computation time for two groups (Sec.) 

Method 
Group RANSAC MLESAC MGA SEA SEA+T FMEA FMEA+T 

G1 3.141 2.735 4.320 2.324 2.418 1.563 1.615 
G2 3.673 3.573 4.456 2.141 2.152 1.325 1.377 

 

 
Figure 6: Computation time of synthetic data test 

 
 (G2): The means and standard deviation of 

Gaussian noise are fixed to 0, 1, respectively; the 
percentage of outliers disturbed by the noise and 
false matches are varied from 10% to 50%, as shown 
in Table 2. 

Tables 1 and 2 show the experimental results of 
(G1) and (G2) respectively, and Figures 4 and 5 also 
illustrate them. Table 3 shows the average 
computation time taken by these methods, which is 
also illustrated in Figure 6. From these tables and 
figures, it can be noticed that the EA-based 
approaches perform better than other typical 
methods, and almost as well as genetic algorithm in 
terms of accuracy. In the four EA-based methods, 
FMEA turns out to be the quickest followed by 
FMEA+T. The residual error of FMEA is smaller 
than that of SEA, and the computation time 
decreased by 48.69% in the noise-perturbation test, 
and 61.58% in the outlier-perturbation test. This 
strongly suggests that the survival-of-finite-fitness 
rule efficiently relieves the computational burden by 
removing a large number of unfit agents. It can also 
be seen that FMEA +T and SEA+T obtain better 
results than FMEA and SEA, which confirms that 
the subset template improves the communication 
among all the agents in the population and helps 
offspring inherit good resources. 

4.2 Experiments with medical 
images  

The performance of our approach is also 
demonstrated by using a variety of image triplets. 
Three different triplets of medical images are taken 
from a laparoscopic operation. Figure 7 illustrates 
the first triplet of images we utilized. The white 
circles denote the feature points obtained with corner 
detector, and the white arrow lines illustrate the 
movement of matching points between the images. 

Table 4 shows the residual error of the medical 
image testing. We can see that FMEA method also 
perform best in real image experiments. The mean 
residual error of RANSAC, MLESAC, MGA and 
SEA are7.240, 1.132, 0.886 and 1.070 times as 
much as that of FMEA. As to the computational 
efficiency, FMEA works so fast that the 
computation time for FMEA is 0.4158, 0.6832 as 
much as those of SEA and MGA, respectively.  

From the experiments it can be concluded that 
the novel evolutionary strategy of FMEA helps 
agents search for a fit parameter set in the uncertain 
solution space, and allows them to move more 
efficiently toward the global optimum by gradually 
reducing the chance of reproducing an unfit dataset.  

 

     
Figure 7: The medical images from three viewpoints 
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Table 4: Residual error of different pairs of medical images 
Method 

Group RANSAC MLESAC MGA SEA SEA+T FMEA FMEA+T 

MG1 6.537 1.664 1.584 1.702 1.887 1.637 1.621 
MG2 8.025 2.124 1.621 2.116 2.075 1.936 1.907 
MG3 29.06 3.032 2.135 2.626 2.651 2.452 2.276 

 
5 CONCLUSION 

In this paper, we described a novel competitive 
evolutionary agent-based approach to trifocal tensor 
estimation, which employs a new competitive 
strategy to control the breeding number of new 
agents and reduce the chance of reproducing unfit 
ones. It focuses on the reproduction behavior to 
reduce the computation time, and produces results 
commensurate with, or superior to, that of SEA. The 
experimental results indicate that the proposed 
method attains a high level of performance in terms 
of accuracy and computational efficiency. It can 
obtain an optimal (or near optimal) result in the 
solution space and is robust to outliers, even when a 
large number of outliers are involved. 

By accurately estimating the trifocal tensor, it 
will now be possible to generate 3D views of the 
sequence of 2D images.  This brings the authors 
closer to their ultimate goal, the real time generation 
of 3D views during a laparoscopic procedure in 
order to enhance features, in particular obscured 
features, to the surgeon.  This requires that the 
geometric data are estimated as fast and accurately 
as possible. The novel finite multiple evolutionary 
agent-based approach presented here allows us to do 
this. 
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