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Abstract: This study has three main objectives. First, to point and discuss the principal features, advantages, and 
limitations of distributed state estimators. Second, to analyze structures and methodologies related to the 
distributed state estimation problem, with emphasis on the heterarchical one. Finally, to delineate some 
prospects for future investigations. 

1 INTRODUCTION 

To provide a complete description of a complex 
system and its effective control requires a great 
quantity and variety of sensors. Multiple sensors 
provide more information and hence a better and 
more precise understanding of a system and its 
operation. Multisensor systems have found 
applications in process control, robotics, navigation, 
aerospace, meteorology, manufacturing, energy 
generation and defense systems, among others. 

A multisensor system may employ a range of 
different sensors, with different characteristics, to 
obtain information about a real system. The diverse 
and sometimes conflicting information obtained 
from multiple sensors give rise to the problem of 
how the information may be combined in a 
consistent and coherent description of the 
environment under observation. This is one of the 
problems of data fusion in multisensor networks that 
hence requires the elaboration of methods that 
establish how the information derived from a 
multitude of sensors can be combined, in order to 
obtain plausible descriptions of the observed system.  

Many data fusion problems in multisensor 
networks involve a distributed state estimation 
process. The fusion of information, for example, on 

the multi-target tracking problem, involves two 
important phases: distributed state estimation – 
treated in this article – and data association.    

Within this context, considerable attention has 
been given to the development of distributed and 
parallel versions of the Kalman filtering algorithm 
(Kalman,1961), known as the best unbiased linear 
estimator or the optimal linear estimator under 
Gaussian assumptions and that serves as basis for 
our investigation.   

The motivation for the material presented in this 
article derives from two important aspects:  
1) From the benefits and  importance of  the  
multisensor systems, particularly, the distributed  
systems of data fusion. 
2)  From  the existence of  a  narrow  gap in  the 
literature to a modest, but  constructive synthesis       
of  distributed state estimation methods. 

Two main categories of distributed state 
estimation architectures: hierarchical and 
heterarchical (Talukdar et al.,1992)  are presented 
and appraised. This serves the purpose of explaining 
the advantages of heterarchical distribution. A 
working definition for a heterarchical system is then 
established and the benefits of such a system 
outlined. The aim is to show that, although 
sometimes suboptimal, this kind of distributed state 
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estimation structure is feasible and can lead to 
additional advantages, for example, for the case of 
considering the information space instead of the 
state space as a starting point for distributed 
structure generation (Mutambara,1995). 

The problems associated with a fully connected 
topology, and alternative strategies for heterarchical 
distributed estimation are outlined. 

An heterarchical distributed state estimation 
structure, is defined as a data processing system in 
which all information is processed locally and there 
is no centralized or coordinator processing site, in 
opposition to an hierarchical distributed state 
estimation. It consists of a network of sensor nodes, 
each with its own processing facility, which do not 
require any centralizer or coordinator module. In 
other words, there is no explicit hierarchy. It is 
important to highlight that the existence of 
information exchange among the levels - under 
centralization - and among the subsystems at the 
same level – under coordination - in the hierarchical 
structures depend on mathematical development 
employed in the hierarchization of the Kalman filter 
discussed in section 2. 

2 FORMULATION OF THE 
HETERARCHICAL 
DISTRIBUTED STATE 
ESTIMATION PROBLEM 

The general theory of hierarchical systems was and 
is continuing to be applied to control and estimation. 
This application involves optimization techniques – 
minimum variance in the Kalman approach – and 
concepts of hierarchical structures.  

The aim is to construct state estimation 
architectures with different performance degrees.  

In this section, we briefly treat the principles of the 
hierarchical state estimation theory, presented in 
(Chong,1979), due to its importance to the 
comprehension and development of distributed state 
estimation topologies. 

In the sequence, we present and analyze the 
dynamics of the hierarchical structures to yield 
distributed state estimation methods.  

2.1 Fundamentals 

We intend to illustrate the estimation problem of a 
stochastic state vector x  conditioned to the 

innovations from two observations  and . 

 Given the local estimates of 

1y 2y
x , ,  

 and the error covariances matrices 
associated, we wish to find the global estimate 

 and the corresponding error 
covariance matrix. 

)/(ˆ 11 yxEx =

)/(ˆ 22 yxEx =

),/(ˆ 21 yyxEx =

The main issue that this well-known formulation 
leads to the heterarchical distributed state estimation 
problem is the following: which dynamics of 
information exchanging in the decomposed structure 
preferably would satisfy the minimum variance 
criteria for the global estimate ?  x̂

The necessary and sufficient conditions for the 
global estimation can be interpreted as follows. If 
( )21 ~,~ yy , innovation’s subspace, and ( )21 ˆ,ˆ xx , 
distributed estimation subspace, are related by 
invertible transformations, then ( )21 ~,~ yy  and 

( )21 ˆ,ˆ xx  generate the same subspace. In general, 

( )21 ~,~ yy  and  do not generate the same 
subspace. This prevents the optimal fusion in the 
Kalman sense. Therefore, the optimal fusion is 
possible when the projection of 

)ˆ,ˆ( 21 xx

x  on ( )21 ~,~ yy  lies 

in the same subspace generated by  .     )ˆ,ˆ( 21 xx
In the case which  does not lie in the 

same subspace generated by  and , as shown 
in Fig. 1, we can adopt the following approaches: 

)(ˆ optimalx
1x̂ 2x̂

 
a)  To   construct   a  heterarchical  distributed   state   
estimation structure based on  the  exchange of  local 
state   estimates   and   data  β     resulting   from    a   

transformation that   establishes an approximate  

relationship  between the  local  subsystems  and  the 

global  system.    allows   us    to    yield         

an heterarchical   estimation    structure  in   which   
the    data   

βiΤ

βiΤ

β   are   transmitted   between  the 
subsystems  at an unique level.  This estimation  
structure  would   be  suboptimal   in  the  Kalman  
sense; 
 
b) Alternatively, to construct  an   estimation  
structure to enlarge  the subspace  generated  by  

,  2  and 

1x̂
x̂ β ,  through  the   incorporation   of   an    
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Figure 1: Geometric view of the heterarchical distributed state estimation (Ω- totally  decoupling  subspace: td ; Φ- partially 
decoupling subspace: pd ; ψ- coupling subspace) 
 
information set η  > β , where βη ⊃ , until 

 lies  in  this enlarged  subspace. The data 

 resulting from the   transformation 

establishes an exact relationship between the local 
and global models. 

)(ˆ optimalx

)~,~( 21 yyη
ηiΤ

These data are transmitted between the levels of 
such a hierarchical estimation structure that is 
coordinated or centralized.  
 
      If we wish to minimize the communication in the 
second approach, without compromising the 
performance of the estimation structure, the 
dimension of the data vector η  must be reduced as 

much as possible obeying the restrictionη  > β .   
 Once the estimation is generated, the 

innovation’s subspace ( )21 ~,~ yy  becomes equivalent 

to , denoted as the optimal distributed 
state estimation subspace.  

),ˆ,ˆ( 21 ηxx

     If an inherently global system is totally 
decoupled, the subspaces ,,ΨΩ  and  constitute 
an unique subspace within the innovation subspace 

. In this case, the estimation structure 

would be inherently heterarchical. 

Φ

)~,~( 21 yy

3 STRATEGIES OF 
HETERARCHICAL 
DISTRIBUTED STATE 
ESTIMATION 

The strategies of decomposition in order to obtain 
heterarchical distributed state estimation structures 
can be developed  for the prediction stage as well as 
for the correction stage of the Kalman filter, for 
instance. The decomposition only of one or both 
stages will depend on the existence of correlation 
between the observation and state noises of the 
system’s model. In (Hashemipour & Laub,1987), for 
example, the strategies of decomposition are 
developed for both stages. 

The problem of heterarchical distributed state 
estimation formulated in this work deals exactly 
with the decomposition of the correction stage and is 
based on the original version of the Kalman filter 
(Kalman,1961) as well as on its alternative Inverse 
Covariance form (Anderson & Moore,1979).  

)ˆ,ˆ( 21 xxΩ  
)(ˆ suboptimal

td
X

x

)
2

,
1

( ~~ yy

)(ˆ suboptimalpdx
),

2
,

1
( ˆˆ βxxΦ  

),
2

,
1

( ˆˆ ηxxΨ  )(ˆ optimalx  
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3.1 Strategies via Matrix 
Partitioning  

These strategies are based on the Inverse Covariance 
of the Kalman filter (Anderson & Moore,1979).  

Consider the global system model: 
 

                  kkkk wxAx +=+1                              (1) 
 
where wk is independent of x0 assumed Gaussian 
with  covariance P0. 

In addition, consider a set of N local observations 
concerning the global system (1), comprised by the 
following equations: 

 
                              (2) Nii

kk
i
k

i
k vxHy ,...,2,1, =+=

 
where the vi , measurement noises, with covariance 
Ri

k, are independent among themselves and 
independent of wk and x0.  
 For the heterarchical distributed state estimation 
problem we assume that the local processing 
algorithms are solved based on local models 
described by: 
 
                                                 (3) i

k
i
k

i
k

i
k wxAx +=

                                                   (4) i
k

i
k

i
k

i
k vxCz +=

  
where  i=1,2,..,N. 
 
 Consider the global system with the state x, 
decomposed into two subsystems with states x1 and 
x2. The local observations,  y1 and y2 , in (1)-(2), 
based on the knowledge of x, provide an exact 
representation of the process. On the other hand, the 
models describing the local subsystems states, x1 
and x2 , of the global system x, and the local 
observations based on knowledge of x1 and x2 , in 
(3)-(4), could provide only an approximate  
representation of  the global system state x. 
 Alternatively, xi

 might exactly represent x. In this 
case xi is a Markovian process identical to x. On the 
other hand, it may be true that xi

 ≠ x. In this case, 
could exists a nodal transformation matrix Ti such 
that xi=Ti x. If Ti does not exist, then or xi represents 
a subvector not considered in the global model x, or  
xi represents an approximate model of this global 
model. This approximation can be reached using 
reduced order models, derived from relaxation of 
part of the correlations of the global model.   

 The global state estimation that will be processed 
in a centralized node, based on  the observation of 
the global system (2), can be written as follows: 

∑ ∑+−=
= =

−−N

i

iN

i

itiiiti yRHPxHRHPxx
1 1

11ˆ  (5) 

where   ≡x  prediction of x.   
            ≡P  covariance of the estimation error of x. 
 
 If there is a transformation Ti that satisfies the 
relationship between the local and global dynamics 
such that the measurements yi and zi in (2) and (4) 
become exactly or approximately compatible, then 
processing at the local nodes solves the following 
local estimation problem: 
  

       
]).

.(ˆ[
1

111

iiii

iiitiiiti

xHR

HIxPyRH

Γ

−−Γ=
−

−−−

 (6) 

 
where iΓ  is the nodal transformation matrix that 

satisfies  iΓ = .  and # denotes the pseudo-
inverse. 

#iC iH

       From (5) and (6) we have: 

                   ∑ Λ−+Λ=
=

N

i

iiii xxGxx
1

)ˆ(ˆ            (7) 

where 

                                (8) 

;

;

;

1

1
1

1

iiitiii

itii

N

i

iiti

HRHPI

PPG

HRHPI

Γ−=Λ

Τ=

−=Λ

−

−

=

−∑

 
 It is important to point out that if at least an 
unique nodal transformation matrix   provides 
only just an approximate representation for the i-th 
sub-state, then the global state estimation based on 
the gobal reconstructibility will not be optimal in the 
Kalman sense. 

iΓ

In general, the local estimates are not 
independent.  The correlation between these 
estimates is taken account through the P matrix. The 
local correction gain given in (8) incorporates 
the influence of these correlations in the global 
estimation process represented in (7).  

ix̂

iG
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 If there is a nodal transformation in (8) that 
transforms the global model in a feasible local 
model, such that P, for example, be diagonalizable, 
then  we can construct an heterarchical and 
suboptimal global estimator based on a set of 
communicated data of dimension less than , 
i=1,2,...,N, by undoing the hierarchy. 

iΤ

)ˆ( ixη

  In principle, the strategies via matrix partitioning 
(Chong,1979) and (Hashemipour & Laub,1988), as 
well as the strategies via the multiple projections 
(Hassan et al.,1978), presented in the following 
subsection, require centralizer and coordinator 
modules, respectively, in order to fuse the local 
estimates in such hierarchical estimation structure.  

3.2 Strategies via Sucessive 
Orthogonalizations 

These strategies are based on the original version of 
the Kalman filter (Kalman,1961). In this class of 
strategies each local node disposes only of its local 
model that represents exactly a  subsystem of the 
global system. Therefore, the construction of 
heterarchical distributed structures based on these 
strategies assumes the existence of a nodal 
transformation , not explicit, however obvious, 
that satisfies exact relationships between the global 
system and the local subsystems.  

iΤ

From this assumption results the requirement of a 
coordinator module in order to give support to the 
local estimates processing.  

Consider the following representations for the 
local models: 

                          (9) 

i
k

i
k

i
k

i
k

i
k

j
k

N

ij
i

ij
k

i
k

i
k

i
k

vxHy

wxAxAx

+=

++= ∑
≠
=

+
1

1

 
where the same assumptions made to the noise 
variables in (1) and (2) are held. 

The key idea of the multiple projections method 
consists in the decomposition of the correction stage 
of the Kalman filter through the orthogonal 
projection of the state   on the observation vector 
of the global system. The observation vector is 
partitioned into N components of local observations.  

ix

In this way, the following estimation result is 
obtained: 

          ∑+=
=

−
N

i

i
i

iii yxExx
1

1 )~/(ˆ                (10) 

where 
 

  generates the Hilbert subspace:  ∑
=

−
N

i

i
iy

1

1~

;~
...~~~

1
)/(

2
)/(3)/(

1
2)1/(

1

−

−

⊕

⊕⊕⊕
N

kkN

kkkkkk

y

yyy
                 (11) 

)/( 1−Υ= k
ii xEx ; 

≡Υ −1k  observation subspace until the (k-1) instant.  
 
  The corrections based on the (N-1) nonlocal 
innovations, described by (10), constitute the 
coordinated hierarchical nature of the Kalman filter. 
In this hierarchical structure the important task of 
incorporating the inherent correlations among the 
local models, a priori partitioned exactly, and the 
global model, is made by the coordinator. In this 
way, the optimality of the estimation with 
coordinated hierarchy, in the Kalman sense, is 
preserved. 
 In (Quirino & Bottura, 2001) a nodal 

transformation  on the local state is proposed, 

that is not explicitly a priori transformed by  in 
(Hassan et al.,1978), in order to obviate the 
incorporation of the (N-1) nonlocal innovations 
described in (11). Such incorporation that in the 
original structure is proposed in (Hassan et al.,1978),  
it must be considered by each one of the local 
estimators. 

βiΤ
ηiΤ

4 DISCUSSIONS 

The approach taken in this study for distributed state 
estimation is motivated by important contributions 
that exist in the literature. These works take the 
Kalman filter as the starting point to derive the 
parallel structures for state estimation. However, a 
gap resides in the fact that the great majority of the 
proposed structures are concentrated around 
hierarchical structures and do not sufficiently  go 
beyond them in the sense we explore here.  

We believe that in this work we fill part of that 
gap through the explicit discussion of techniques and 
strategies of how to undo the hierarchical structures 
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in order to generate the heterarchical distributed 
structures, as here discussed.     

The parallelizations of the Kalman filter equations 
are achieved for one or more of the different stages:  
1) parallelism at the prediction stage; 2) parallelism 
at the correction stage; and 3) parallelism via 
segmentation.     

Another interesting technique to parallelize the 
Kalman filter was developed in (Travassos,1980), in 
which the prediction and correction equations are 
simultaneously processed. The forced decoupling 
between these stages is maintained for the interval of 
one iteration during the whole history of the filter. 
However, the filter proposed is suboptimal, in the 
Kalman sense, as proved in (Hashemipour & 
Laub,1988), through the analysis of the estimation 
error covariance matrix. This technique will not be 
considered in this work, and remains open for future 
investigation.  

The principal drawback of the hierarchical 
structures, usually resides in the fact the coordinator 
or centralizer module, though undone, still requires 
great  computational and communication efforts for 
its implementation in a distributed environment. 

 Hierarchical structures present a low performance 
from the point of view of communication and 
synchronization requirements, mainly when the 
number of partitioned subsystems increases. The 
bottleneck in processing for hierarchical structures is 
caused by the centralizer or by the coordinator  
fusion of the information originating in the lower 
levels.  

As recently commented, though these fusion 
modules coordinator as well as centralizer can be 
decomposed, e.g., by strictly computational 
procedures, generally, they still can generate fully 
connected structures with equal or great 
communication and computational requirements 
than the ones of the original structures. In addition to 
this, the gain achieved with respect to the 
communication and synchronization requirements 
through e.g., merely computational procedures, is 
not significant, as shown in (Quirino et al.,1988). 

In order to minimize the effects of these 
restrictions we must reflect about the following 
question: How the  proposal of partitioning the 
subsystems can improve the consistency of the 
distributed local estimates? It is because, depending 
on the used partitioning proposal the distributed 
local estimates could result from almost purely or 
purely local data implying in different performances 
of these distributed local estimators. 

 Within this context, there are controversies on the 
above mentioned questions: e.g., why the inherently 
hierarchical structures, yet do not present a good 
performance, if: a) The global estimate derived from 
local estimates can locally preprocess more data 
without any loss of global performance?; b) Local 
filtering may reduce the required bandwidth for 
transmission of information to a centralizer or 
coordinator processor?; c) For local models with 
dimension smaller than for the global models 
potential advantages can be achieved, e.g., the local 
processor can be made far less complex than the 
global processor?  

 Discussions about these points have been made, 
e.g., in  (Chong,1979;  Hashemipour  &  Laub, 1987, 
1988; Hassan et al., 1978; Mutambara, 1995; 
Quirino et al., 1998; Quirino & Bottura, 2001; 
Sanders et al., 1978; Shah, 1971; Speyer, 1979; 
Tackers et al., 1980; and Willsky et al., 1982). 

 In principle, (7) and (10) can be seen as global 
solutions to the hierarchical state estimation problem 
based on the dichotomy among the information filter 
and the state space Kalman filter representations.  

Using (7) and (10) as starting points, a synthetic 
diagram proposed as support to the development of 
distributed structures is shown in Fig. 2. 

The fully connected topologies resulting from the 
strictly computational heterarchization of the 
Kalman filter, as investigated in (Mutambara, 1995) 
and (Quirino et al., 1998), produce optimal 
distributed state estimators, due either to the 
distribution of the coordinator task into the 
subsystems at the lower level in the hierarchy, class 
4 of Fig. 2., or to the complete transfer of the whole 
coordinator task to the lower level in the hierarchy, 
class 3 of Fig. 2., respectively. 

Such procedures of heterarchization are 
characterized by being merely derived from the 
computational distribution of the hierarchical 
algorithm on the distributed  environment. 

In spite of not providing significant gain, the 
distributed topologies achieved by purely 
computational procedures present important 
comparative characteristics to be analyzed and 
compared as scalability, communication, 
computation, and vulnerability to losses of 
communication channels.  
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Figure 2: Classes of Strategies for Heterarchical Distributed State Estimation 
 
Distribution strategies based on the multiple 

projections method as well as on matrix partitioning, 
lead us to face the question on which model of the 
local subsystems to adopt considering the global 
model? 

For distributed filters derived via matrix 
partitioning and the successive orthogonalizations, 
the nodal transformation matrices, under certain 
assumptions, can be implicitly modeled in such a 
way that, the local estimates can be considered very 
close to the optimal estimation. This approximation 
transforms such structures, in principle strongly 
coupled into structures partially decoupled of 
optimal state estimation.  

Strongly coupled topologies provide a very 
restricted practical utilization when dealing with 
large scale systems. Within this context, 
generalizations of the state space model as well as of 
the form how the nodal transformation matrices are 
obtained, are essential to develop topologies of state 
estimation weakly or strongly decoupled state 
estimation.   

In (Quirino et al.,1998) an heterarchical 
distributed    estimation   topology    nonhierarchical,  
however fully connected, is proposed. 
     In spite of  the developed structure to be fully 

connected, the  communication and synchronization 
characteristics and  the efficiency of the 
multiprocessing system were substantially improved. 

A variance another transformation, a variant of 
the one obtained in (Quirino et al.,1998), is under 
investigation using a methodology of nodal 
transformation proposed in (Mutambara,1995). 

The development of distributed state estimation 
structures expliciting its correlations only in a 
heuristic way  encumbers an enlarged understanding 
of the relationship among that structure and the 
existing ones.  

Opposite to this perspective, in (Quirino & 
Bottura,2001) a suboptimal state estimation structure 
is proposed via an analytical development. This 
structure is  conformed in the class 2 of Fig. 2. of 
strategies, and its development is based on the 
hierarchical structure proposed in (Hassan et 
al.,1978). This analytical development and the form 
of the approximate nodal transformation used in 
(Quirino & Bottura,2001) based on the SPA 
(Supplementing Partitioning Approach) technique 
proposed in (Shah,1971). Also, in (Quirino & 
Bottura,2001) a theorem that establishes the 
necessary and sufficient conditions to obtain the 
heterarchical distributed structure is presented, as 

   DICHOTOMY OF THE      
         DISTRIBUTED       
          MODELLING     

             NODAL   
TRANSFORMATIONS Ti 

1
2 3

4

    
     INFORMATION        
           FILTER 

   KALMAN       
    FILTER 

Sucessive 
Orthogonalizations 

Matrix  
Partitioning 

β η

     Suboptimal
   Heterarchical  
 State Estimation     
      Structures 

        Optimal 
     Heterarchical  
   State Estimation   
       Structures 
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well as for the analysis of the conditions 
heuristically established in (Shah,1971). 

Filters conformed in the class 1 of Fig. 2., should 
be investigated using the same approximate 
representation  used in (Quirino & Bottura,2001). 

A study of canonical forms of the nodal 
transformation matrices, indispensable to formulate 
the distribution strategies, would be of great value to 
the design and analysis of distributed efficient 
structures for the estimation problem. 

It is important to highlight that within the context 
of prospects for future investigations and discussion 
on the design of distributed state estimators, 
(Willsky et al.,1982) remains one of the most 
important references. 

5 CONCLUSIONS 

In addition to presenting some strategies to construct 
distributed state estimation algorithms proposed in 
the literature analyzing some aspects of them, we 
discuss an heterarchical distributed state estimation 
algorithm proposed in (Quirino & Bottura,2001).   

It is our belief that the material presented in this 
paper contributes to the development of efficient 
distributed state estimation algorithms. 
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