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Abstract: In agent-based systems, especially in autonomous mobile robots, modelling the environment and its changes 
is a source of problems. It is not always possible to effectively model the uncertainty and the dynamic 
changes in complex, real-world domains. Control systems must be robust to changes and must be able to 
handle the uncertainties to overcome this problem.  In this study, a reactive behaviour based agent control 
system is modelled and implemented. The control system is tested in a navigation task using an 
environment, which has randomly placed obstacles and a goal position to simulate an environment similar 
to an autonomous robot’s indoor environment. Then the control system was extended to control an agent in 
a multi-agent environment. The main motivation of this study is to design a control system, which is robust 
to errors and is easy to modify. Behaviour based approach with the advantages of fuzzy reasoning systems 
is used in the system  

 

1 INTRODUCTION 

Since the growing interest in agent based systems, 
many methods were developed for controlling 
autonomous intelligent agents, which are widely 
used for problem solving in Artificial Intelligence 
(AI). These methods can be categorized as 
deliberative and reactive approaches. 
 
Deliberative approach, which is the classical way of 
controlling autonomous agents, relies on global 
planning method. A deliberative agent decides on 
which actions to take, by considering information 
about previous experiences and an overall goal as 
well as information from its current 
perception/situation.  
 
However, deliberative approach has some 
drawbacks. For example, in a dynamic environment, 
some of the information, that agent remembers from 
a previous experience may become invalid as the 
environment changes. If a task is highly structured 
and predictable it makes sense to use a deliberative 
approach. But in complex, real-world domains 
where uncertainty cannot be effectively modelled, 

agents must have a means of reacting to an infinite 
number of possibilities. 

 
In reactive approach, actions of the agent are based 
completely on the changes of its environment. 
Reactive agents don’t use planning or internal 
models of the environment. Instead, they respond to 
apperception of the real world around them by using 
stimuli-response mechanism. Thus, in reactive 
approach, there is a direct connection between 
agent’s inputs and actions. This causes the main 
drawback of reactive approach; uncertain inputs lead 
reactive agents into wrong actions.  
 
After subsumption architecture was proposed by 
Brooks (Brooks, 1986), behaviour based approaches 
became very popular in solving perception errors 
and uncertainties of the environment for autonomous 
mobile robots. 
 
Use of fuzzy logic (Zadeh, 1965) for dealing with 
uncertainties is also proved to be useful in recent 
years (Hagras, 2001), (Tunstel, 1996), (Tunstel, 
1997), (Saffiotti, 1997), (Tunstel, 2002). Fuzzy 
inference systems, unlike classical inference 
systems, can express human expert knowledge 
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naturally without a need for an analytical model of 
the system.  Since they don’t need exact 
mathematical models, fuzzy inference systems are 
powerful tools to be used in uncertain and not 
completely known environments. 
 
In fuzzy inference systems, there is not always 
expert knowledge available to define the proper 
rules and membership functions. To solve this 
problem, hybrid methods like neuro-fuzzy systems 
and genetic-fuzzy systems were proposed (Jang, 
1993), (Lin, 1995), (Ahrns, 1998), Bonarini, 1996), 
Godjavec, 2000), (Hagras, 2000). These systems 
combine the advantages of fuzzy logic and neural 
networks.  
 
In this study, a reactive behaviour based agent 
control system is modelled and implemented. The 
control system is tested for a navigation task in an 
environment, similar to an autonomous robot’s 
indoor environment. As a second phase, the control 
system is extended to a multi-agent domain were the 
agents’ tasks are to search a goal as well as avoide 
obstacles and other agent(s). The system uses a 
neuro-fuzzy system called Adaptive Network Fuzzy 
Inference System (ANFIS) to hold the rule bases of 
the behaviours (Jang, 1993). Behaviour hierarchies 
proposed by Tunstel (Tunstel, 1997) was used for 
the behaviour coordination. 
 
The article is organized as follows. Chapters 2 and 3 
give the background about behaviour-based robotics, 
and neuro-fuzzy systems. Chapter 4 gives details of 
single-agent control architecture and its experiment 
results. Chapter 5 gives details of multi-agent 
control architecture and its experiment results. 
Chapter 6 concludes the study and gives future 
work.  

2 HIERARCHICAL FUZZY 
BEHAVIOUR CONTROL 

Controlling agents by using behaviour hierarchies by 
Tunstel (Tunstel, 1997) like many other works, is 
basically inspired by Brooks’ subsumption 
architecture (Brooks, 1986). In this reactive 
approach, main idea is to divide a robot’s task into a 
finite number of task-achieving behaviours and 
arrange these behaviours as a hierarchical network 
of distributed rule bases each responsible from a 
different part of the overall task.  
There are two types of behaviours in the hierarchy: 
primitive and composite. Primitive behaviours are, 

at the bottom of the hierarchy and they are simple 
and self-contained behaviours, which serve a single 
purpose. Primitive behaviours are independent from 
other behaviours and they focus on a part of the 
complex task.  
 
Only primitive behaviours themselves are not 
sufficient to perform a complex task. Coordination 
among them is needed. Composite behaviours are 
used for behaviour modulation. A composite 
behaviour controls two or more primitive behaviours 
and decides how true it is to let them affect the 
overall result of the agent. For example, in a 
navigation task, goal seeking can be considered as a 
composite behaviour and it may control primitive 
behaviours such as “go to a given coordinate” and 
“avoid obstacles”. 
 
For behaviour modulation, composite behaviours 
use a concept called degree of applicability (DOA), 
which is a weighted control decision-making 
concept (Tunstel 1997), (Tunstel, 2002).  Composite 
behaviours produce degree of applicability values 
for each primitive behaviour they control. These 
DOA values are a measure of instantaneous level of 
activation of primitive behaviours. Outputs of each 
primitive behaviour are multiplied with its degree of 
applicability value before adding this output into the 
overall result. Since degree of applicability values 
are used as percentages for desirability of the 
corresponding primitive behaviours, their values are 
between 0 and 1. 
 
DOA values are determined dynamically for each 
step of the given complex task. This feature allows 
primitive behaviours to influence the overall 
behaviour to a greater or lesser degree as required by 
the current situation and goal. It serves a form of 
adaptation since it causes the control policy to 
dynamically change in response to goal information 
and inputs taken from the agent’s environment 
(Tunstel, 1997). 
Behaviour hierarchies can easily be extended to 
work in a multi-agent domain by adding some 
behaviour to the hierarchy for coordination and 
communication with the other agents. 

3 ANFIS 

ANFIS (Adaptive Network Based Fuzzy Inference 
Sytem) is a fuzzy inference system implemented in 
the framework of adaptive networks by using a 
hybrid learning procedure.  
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ANFIS was proposed by Jang (Jang, 1993) in 1993. 
By using the hybrid learning method of neural 
networks and fuzzy inference systems, ANFIS 
constructs an input-output mapping based on human 
knowledge (by using fuzzy if-then rules which 
captures human knowledge easily) and stipulated 
input-output data pairs. 
ANFIS is a feed-forward network whose nodes are 
connected through weightless links. Some of the 
nodes in an ANFIS network are adaptable which has 
adaptable parameters. The other type of nodes in 
ANFIS architecture is fixed nodes, which have no 
adaptable parameters. An example ANFIS 
architecture is shown in Figure 1. Adaptive nodes 
are shown as square nodes and fixed nodes are 
shown as circular nodes in the figure. 

4 SINGLE AGENT CONTROL 

In this study, behaviour hierarchies and a hybrid 
learning method of neural networks and fuzzy 
inference systems are combined to implement an 
autonomous agent control method. This method 
obtains the advantages of fuzzy systems, numerical 
systems, and provides flexible control architecture. 
Task of the agent is to reach a given goal position 
while avoiding obstacles on its way and following 
the shortest path to the goal as close as possible. 
Behaviour hierarchy used to achieve this task is 
given in Figure 2. 
For learning all the primitive and composite 
behaviours in the hierarchy, except Move Randomly 
behaviour, ANFIS learning architecture is used in 
off-line learning mode. 
A hybrid of gradient method and the least squares 
estimate is applied in each epoch. This procedure is 
composed of a forward pass and a backward pass. In 
the forward pass, input data goes forward to 

calculate each node’s output and the overall error 
measure is calculated. Parameter set of the ANFIS 
network, S, is calculated by using the equation 
below: 
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where iS  is called covariance matrix. 
In the backward pass, the error rates propagate from 
the output towards the input layer, and the 
parameters in S are updated by the gradient method. 
Assuming the given training data set has P entries, 
error measure for the pth entry of the training data is 
the sum of squared errors; 
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where #(L) represents number of layers in the 
network, pmT , is the mth component of pth target 

output vector, and L
pmO ,  is the mth component of 

actual output vector produced by the ANFIS 
network. Hence the overall error measure is;  
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In the training phases of all behaviours, the agent is 
placed in random coordinates on a board with 
obstacles placed randomly on to get the training data 
set. Behaviours in this hierarchy are explained 
below; 
Avoid Obstacle: This behaviour has three inputs: 
distance from the closest obstacle on the left, 
distance from the closest obstacle on the right, and 
distance from the closest obstacle in front. Obstacle 
Avoidance behaviour tends to go to the direction 
where obstacle distance is the farthest. 

Figure 1: An example ANFIS architecture 
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Go To Goal: Inputs to this behaviour are: goal 
distance on the left, goal distance on the right, and 
goal distance in front. This behaviour tries to go to 
the direction where goal distance is the smallest. 
Follow Optimum Path: Inputs of this behaviour 
are: distance from the optimum path on the right, on 
the left, and in front. Follow Optimum Path 
behaviour, as its name implies, tries to follow the 
shortest path to the goal as close as possible. 
Move Randomly: This behaviour does not use 
any learning technique. It simply produces a random 
speed and direction for the next movement. It is used 
when the agent gets stuck somewhere and cannot 
move. 
 
All four behaviours explained above are simple 
primitive behaviours, which deal with only a single 
goal. For example, Go To Goal does not care if there 
are obstacles in the direction it chooses to go or 
Avoid Obstacle does not know if it gets closer to the 
goal or not while trying to escape an obstacle.  
 
Since these behaviours only consider their own 
simple goals, another more complex behaviour is 
needed to coordinate them. In the hierarchy given 
above, the composite behaviour, which coordinates 
and controls them, is Navigate behaviour explained 
below. 
Navigate: Composite behaviour Navigate controls 
four primitive behaviours by finding their 
appropriate DOAs in each step of the execution such 
that the agent moves towards the goal without 
hitting obstacles and follows the optimum path 
towards the goal. As the overall task, Navigate 
behaviour   uses   all   the   information   about 
obstacle distances, goal distances, and distances 
from the optimum path. 
 
This behaviour can be thought as the combination of 
four parts, each controlling a primitive behaviour. 

For controlling Avoid Obstacle behaviour, inputs 
used are: the result produced by behaviour Avoid 
Obstacle, obstacle distance in the direction where 
Avoid Obstacle intends to go, and the distance from 
the goal position in the current position. This part of 
the behaviour tries to produce a Degree of 
Applicability (DOA) value for the Avoid Obstacle 
primitive behaviour such that DOA increases as the 
agent approaches to an obstacle and decrease as the 
agent approaches to the goal. 
 
Second part of the Navigate behaviour controls 
DOA value of Go To Goal. Inputs of this part are: 
the result produced by the behaviour Go To Goal, 
obstacle distance in the direction where Go To Goal 
intends to go, and the distance from the goal location 
in the current position. DOA value for the Go To 
Goal behaviour tends to increase as the agent gets 
closer to the goal and decreases as the agent gets 
closer to an obstacle. 
 
Third part of the behaviour controls Move Randomly 
behaviour and produce its DOA value. Inputs of this 
part are: distances between the current position and 
the position two steps ago, four steps ago, and six 
steps ago. DOA of Move Randomly behaviour tends 
to increase as these distances get smaller. 
Fourth and the last part of the Navigate behaviour 
controls, DOA of Follow Optimum Path. Inputs of it 
are: the result produced by the Follow Optimum 
Path behaviour, obstacle distance in the direction 
where Follow Optimum Path wants to go, and 
distance from the goal location in the current 
position. DOA gets bigger if optimum path is far. If 
the agent is already on the optimum path, then DOA 
is negative. 
Outputs produced by all behaviours are multiplied 
by their DOAs and vector summation is used to 
combine the results of all behaviours. 
 

Navigate 

Avoid 
Obstacle 

Go To 
Goal 

Move 
Randomly

Follow 
Opt. Path 

Figure 2: Behaviour hierarchy for controlling single agent 
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Experiments were carried out in an environment of 
size 100x100. The agent’s task is to reach a goal 
position without hitting any obsatcles and by 
following an optimum path to the goal as close as 
possible. Obstacles used in the environment are 
static obstacles and are represented by  
orangerectangles in Figure 3. The green rectangle on 
the figure is the goal. The dashed line on the figure 
is the optimum path to the goal when the agent starts 
its task from the upper left corner of the board.  To 
test robustness of the control architecture 10% error 
was added to inputs of the behaviours (10% of the 
input values were added or subtracted randomly and 
these values were used as inputs). 
 
Initial direction of the agent is South. The agent 
knows only the distances from the goal, optimum 
path and closest obstacles to simulate perception of a 
mobile robot. At the starting position, because of the 
Avoid Obstacle behaviour, the agent chooses to turn 
east (that is agent’s left hand-side). At this point, 
since the agent is already on the Optimum Path, 
composite behaviour Navigate chooses to produce a 
negative DOA for Follow Optimum Path behaviour 
as shown in Figure 3 and stay in the current position. 
When applying Go To Goal behaviour, both going 
forward and left are equally active. However since it 
is trained to favour going forward in this case, it 
chooses to go forward. Because the obstacle is close, 
Avoid Obstacle has the highest DOA and the agent 
turns left. It still goes forward slightly because of the 
Go To Goal behaviour. The points where the agent 
changes direction are marked on both the agent’s 
path and the graph, which shows DOAs of the 
behaviours. Agent’s behaviour at these points is 
explained below. 
 

At point A, direction is East. Avoid Obstacle and 
Follow Optimum Path choose to turn right, but Go 
To Goal still chooses going forward. At this point, 
the distance from the obstacle in the direction where 
the agent is to go determines the DOA because 
output of the Follow Optimum Path is greater than 
the obstacle distance in that direction. DOA is 
chosen as the highest value possible to prevent the 
agent hitting the obstacle. DOA of Go To Goal also 
is determined according to distance from the closest 
obstacle in that direction. DOA of Avoid Obstacle is 
very high because of close obstacles. 

At point B, the direction is South. Since there are no 
obstacles close to the agent on the left, right, and in 
front, DOA of Avoid Obstacle is relatively small. 
Again because there are no close obstacles, DOA of 
Follow Optimum Path is determined by the distance 
from the optimum path. Since the agent is not very 
far from the optimum path, DOA at this point is not 
high but it still affects the overall behaviour and 
causes the agent to go left. The distance from the 
goal also determines DOA of Go To Goal and it is 
higher than the previous step’s DOA since the agent 
is getting closer to the goal. Go To Goal behaviour 
causes the agent to go forward at this point. 

At point C Avoid Obstacle becomes dominant again 
as the agent approaches a new obstacle. Since 
distance from the optimum path remains the same, 
DOA of Follow Optimum Path does not change 
much. DOA of Go To Goal is small in this step 
because this behaviour chooses the agent to go 
towards the obstacle and its DOA is determined by 
the distance from the obstacle. 

At point D again DOA of Avoid Obstacle increases 
because of decreasing distance from the obstacle. 
Since the goal is getting quite close, DOA of Go To 
Goal begins to increase.  

A

B

C
D

E

Figure 3: Experiment results for single agent control 
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t point E the most dominate behaviour is Go To 
Goal since the goal is closer now. In spite of this 
fact, DOA is not increased fast in order not to hit the 
wall. Because the agent is getting close to the goal, 
DOA of Avoid Obstacle gets smaller. This is needed 
for the Obstacle Avoidance behaviour to not to 
prevent the agent from reaching the goal by moving 
it away from the walls of the board. 

5 MULTI-AGENT CONTROL 

As the second phase of the study, the control method 
for a single agent explained in the previous sections 
was extended to control the agents in a multi-agent 
architecture. Task of the agents is to search the goal 
while avoiding obstacles on their way. This time the 
agents must learn to avoid the other agents too to 
prevent collisions and keep the agents apart so that 
they can search different parts of the board to find 
the goal.  Behaviour hierarchy used is given in 
Figure 4. 
The newly added behaviours are as follows: 
Avoid Agent: This behaviour prevents the agents 
to collide and get close to each other so that they can 
search different parts of the board. This primitive 
behaviour allows agents to share the search space 
somehow. 
Search Goal: This composite behaviour has two 
parts to control behaviours Navigate and Avoid 
Agent. The first part controls Avoid Agent behaviour 
and has four inputs; output produced by the 
primitive behaviour Avoid Agent, obstacle distance 
in the direction Avoid Agent wants to go, goal 
distance and the distance from the closest agent. 

Second part of the Search Goal produces a DOA 
value for Navigate. DOA it produces is complement 
of the Avoid Agent’s DOA. 
 
Experiments were carried out in the same 
environment defined in section 4. The obstacles used 
in the environment are static obstacles but the agents 
move around the board and they can be considered 
as dynamic obstacles for the other agent(s). Two 
agents were used for this experiment. The agents 
start at locations (40, 0) and (80, 0) of the board. The 
goal location they are supposed to find is the lower 
right corner of the board. The results of the 
experiments are shown in Figure 5. 
 
The path shown in pink is the path Agent-1 follows 
through the experiment. The path shown in green is 
the path of Agent-2. The experiment stops when at 
least one agent reaches the goal position. 

Initial directions of both agents are South. Numbers 
on the figure shows number of steps of the agents. 
Green numbers belong to Agent-1 and red numbers 
belong to Agent-2. At the starting position (point-1), 
because the agents barely see each other, Avoid 
Agent behaviour is not much  

Navigate 

Avoid 
Obstacle 

Go To Goal Move 
Randomly 

Search Goal 

Avoid 
Agent 

Figure 4: Behaviour hierarchy for multi-agent control 
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Figure 5: Experiment results for multi-agent control 

active. In this position, the most dominant behaviour 
is Move Randomly.   
At point-2, since the agents get closer, they begin to 
see each other and Avoid Agent behaviour gets more 
dominant. Because of this behaviour, both of the 
agents change their direction to go away from each 
other. 

At point-3, Agent-1 is oriented by the Avoid 
Obstacle behaviour and changes its direction to 
move away from the obstacle but Agent-2 keeps 
going towards the only direction it would not 
approach Agent-1 and hit walls of the board. 

At point-4, Agent-2 is guided by the Avoid Obstacle 
behaviour and Agent-1 goes forward to not to 
approach Agent-2 on the left and the obstacle on the 
right. 

At point-5, both Avoid Obstacle and Avoid Agent 
behaviours dominate Agent-2. So the agent goes 
towards a direction which is a composition of these 
two behaviours and ends up going South to avoid 
Agent-1 and going West to avoid the obstacle. For 
Agent-1, both Avoid Obstacle and Avoid Agent 
behaviours choose to go towards West. 

At point-6, both agents are controlled mostly by 
Avoid Obstacle behaviour. At point-7 while Agent-1 
is still controlled by Avoid Obstacle behaviour, 
Agent-2 begins to see the goal. Because of both 
Avoid Obstacle and Go To Goal behaviours, it turns 
towards south. 

At points 8 and 9 Agent-1 is controlled by Move 
Randomly behaviour because there are no close 
obstacles and agents around. Agent-2 is now very 
close to the goal and it is controlled by only Go To 
Goal behaviour. 

6 CONCLUSION 

Fuzzy controllers have been widely used in robotics 
applications in recent years, because there is usually 
uncertainty in the inputs and it is not possible to 
obtain a model of the environment. Another 
advantage of using fuzzy logic in robot controllers is 
the convenience it provides to represent human 
knowledge without a need for analytical model of 
the system. 

In this study, a behaviour-based control strategy 
using ANFIS neuro-fuzzy learning approach is 
presented. Fuzzy behaviour hierarchies are used to 
combine the behaviours in the system. It resulted in 
a system robust to errors in input data, and easy to 
modify by adding new behaviours to the hierarchy. 
The agents using this control architecture 
successfully navigate in simulated indoor-like 
environments with both static and dynamic obstacles 
in it and find and reach goal positions. 

This study has an advantage over the previous 
studies, which apply fuzzy behaviour hierarchies [4, 
6] in finding and tuning the membership functions, 
which is usually done this by trial.  In this study, the 
membership functions are found and tuned by 
ANFIS automatically. 

As a future work, multi-agent control architecture in 
the second phase of the study can be improved by 
adding new behaviours to the system. For example, 
a new behaviour can be added for the agents to share 
the information they have with the other agent or 
share their tasks. As another improvement ANFIS 
system can be used in on-line learning mode to adapt 
the agent to the changes in the environment. 

The control architecture presented in this study is 
tested in a simulated environment. As another future 
work, the study can be tried on a real mobile robot 
and in real world problems like tasks of finding a 
target location in an unknown environment. 
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