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Abstract: Low fuel consumption and low emissions are key issues in modern internal combustion engines design. For 
this reason, an effective on-line control of the injection process requires the mathematical equations 
describing the system dynamics. The inherent nonlinearities make the modeling of the fuel-injection system 
hard to accomplish. Moreover, it is necessary to trade off between accuracy in representing the dynamical 
behavior of the most significant variables and the need of reducing complexity to simplify the controller 
design process. In this paper we present a second order lumped parameters model of a Compressed Natural 
Gas injection system for control system synthesis and analysis. Based on the proposed model, we propose a 
generalized predictive controller to regulate the injection pressure, which guarantees good performances and 
robustness to modeling errors.  

1 INTRODUCTION 

Today it is a widely accepted opinion that 
performances of internal combustion engines strictly 
depend on fuel injection dynamics and metering of 
air/fuel mixture (Heywood). Owing to a better 
control on air/fuel ratio, the innovative Common 
Rail injection system remarkably reduces noxious 
emissions, consumptions and noise in Diesel 
engines, while improving efficiency and available 
power (Maione, 2004a). These goals are achieved by 
setting the injection pressure to a fixed value, while 
controlling injection timings electronically for 
different operating conditions. 

It is also well known that, if compared to liquid 
fuels, the Compress Natural Gas (CNG) reduces 
polluting emissions of CO, NOx, HC and particulate 
of internal combustion engines, and guarantees their 
better efficiency, thanks to its good antiknock 
properties (Weaver). However, greater difficulties in 
metering make the use of CNG less worthwhile. 
This drawback can be overcome by applying the 
Common Rail technology to CNG engines and by 
using the injection control to improve performances. 
However, improving the controllers design process 
requires a quite accurate model for predicting the 
system behavior. 

Injection system models for Diesel engines are 
mainly based on three different approaches. The 
straightest one is founded on fluid-dynamic 

simulation packages like AMESIM, which 
encompasses libraries of mechanical components, 
and requires precise knowledge of the system 
geometrical data (Mulemane). Although the 
resulting models provide an accurate representation 
of system dynamics, which is appropriate for 
mechanical design, they are not in the form of 
mathematical equations useful for control purposes. 
Different classes of models descend from 
identification processes based on real data. They 
guarantee a good prediction of the system behavior 
if nonlinear functions are exploited (Maione, 
2004b). Finally, some injection system models are 
based on equations describing the physics 
underlying the process. Basically, this approach 
leads to Partial Differential Equations or high order 
representations, which are certainly not suitable for 
control purposes (Cantore), (Kouremenos), (Maione, 
2004a).  

However, to the best authors knowledge, there is 
lack of studies carried out for modeling and 
controlling gaseous fuel injection systems. In this 
paper we propose a simple lumped parameters 
model describing only main fluid-dynamic 
phenomena of the CNG injection system. It is in the 
form of a second order state space representation 
suitable for designing controllers of the rail pressure. 
Moreover, we also stress that tuning the parameters 
of the model requires a minimal set of the system 
geometric data. Finally, on  the  basis of  this model 
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Figure 1: Block scheme of the CNG Common Rail 
injection system 

 
we show how to design a Generalized Predictive 
Controller (GPC) for the rail pressure which 
parameters directly descend from the model 
equations (Rossiter). 

2 STATE SPACE MODELING OF 
THE CNG INJECTION SYSTEM 

The main elements of the CNG injection system are 
a fuel tank, storing high pressure gas, a controlled 
pressure regulator, a common rail and four electro-
injectors. The regulator reduces the pressure of the 
fuel supplied by a tank, and sends it to the common 
rail, feeding the electronically controlled injectors. 
Then the injectors send the gas to the intake 
manifolds to obtain the proper air/fuel mixture 
(Figure 1). 

The large volume of the common rail helps in 
damping the oscillations due to the operation of both 
pressure regulator and injectors. So it ensures a 
constant pressure as requested by a correct metering 
of the injected fuel. In fact, the injection flow only 
depends on rail pressure and injection timings, 
which are precisely driven by the Electronic Control 
Unit (ECU). The output signal of a pressure sensor 
inside the rail is processed to close the control loop. 

The pressure regulator consists of a main 
chamber with a variable inflow section, which 
depends on the axial displacement of a spherical 
shutter over a conical seat, and of a control chamber, 
whose pressure is regulated by a solenoid valve. A 
piston between the two chambers provides the seal 
for the main valve shutter. The equilibrium of the 
applied forces determines piston and shutter 
dynamics (Smith) (Figure 1). In particular, the 

control chamber pressure is regulated by varying the 
driving current duty cycle (d.c.) among a control 
period, making the valve opened and closed in turn: 
in this way is possible to control the fuel flow from 
the tank towards the rail. Finally, to maintain an 
equilibrium condition in steady state operation, the 
fuel in the control chamber is sent to the main circuit 
through an high resistance orifice. 

To model the CNG injection system we consider 
two control volumes having a uniform, time varying, 
pressure distribution, i.e. the regulator control 
chamber and the rail circuit. We consider the tank 
pressure as an input rather than a state variable as its 
measure is always available on board as it is related 
to the fuel supply. Furthermore, it is likely to assume 
equal injection and rail pressures, so that electro-
injectors are not modeled apart, but included in the 
rail circuit as control electronic valves. Finally, we 
assume a constant temperature in the whole injection 
system, so that the system dynamics is completely 
defined by the pressure variations in the control 
chamber and the rail circuit.  

Continuity equation and perfect gas law 
(Zucrow) lead to the state equations of control 
volumes. In particular the perfect gas law is: 

p mRT V=  (1) 

where p is the control volume pressure, R the gas 
constant, T the temperature and m the fuel mass 
stored in the instantaneous volume V. We can 
neglect possible volume changes due to mechanical 
part motions (for example in the control chamber) 
without sensibly affecting the model accuracy. 
Hence the derivative of (1), immediately gives the 
continuity equation: 

( in out

RT
p m m

V
= −& & & )  (2) 

where in and out  are the input and output mass 
flows, which sum has to be equal to the overall mass 
change in the control volume. Integrating the 
equation (2), after the evaluation of mass exchanges, 
yields the pressure in the generic control volume. 

m& m&

By considering mass flows through control 
chamber and regulator inlet orifices as isentropic 
transformations and by applying momentum 
equation, we get the following equations, depending 
on the output/input pressure ratio r = po/pi (Zucrow): 
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where A is the outlet section surface, ρin is the intake 
gas density and k is the gas elastic constant. 
Equation (3) holds if r > 0.5444 and refers to 
subsonic speed flows, while equation (4) holds if  
r ≤ 0.5444 and refers to sonic speed flows. The 
effect of non-uniformity of the mass flow rate is 
accounted for by a discharge coefficient cd. 

The pressure regulator inlet flow section Ar is the 
lateral surface of a truncated cone and depends on 
shutter and piston axial displacement hs (i.e. the cone 
height): 

( )[ ]0.5 sin 2 sinr s s s sA d h h sβ π β⋅= + ⋅  (5) 

where βs is the slope of the conical seat and ds is the 
minimal seat diameter. The shutter and piston 
dynamics are determined by applying the Newton’s 
second law of motion to the forces acting upon each 
of them. If we neglect the viscous friction term, the 
piston and the shutter inertias due to the large 
hydraulic forces, we can write the force balance: 

0si si s s so c
i

p A k h F F− + − =∑
 (6) 

where psi is pressure acting on the to surface Asi, if 
we assume that pressure gradients are applied to the 
flow minimal section. Moreover, ks is the spring 
constant, Fso is the spring preload, i.e. the force 
applied when the shutter is closed. Finally, Fc is the 
coulomb friction. Hence, we get hs from equation (6) 
and then Ar from (5). 

The shutter displacement of the electro-hydraulic 
valve regulates the flux incoming in the control 
chamber. As its inertia is negligible, we assume that 
the inlet section can be completely opened or closed, 
depending on the actual driving current 
(energized/not-energized circuit), and calculated 
using the equation (5), with hs = {0, hmax}.  

Since the flow between control chamber and rail 
circuit can be considered stationary, it is determined 
by the following equation (Zucrow): 

( )out d L out in outm c c A p pρ=& −  (7) 

where cL takes into account the effect of kinetic 
energy losses in the nozzle minimal section A. 
Equation (7) assumes that no reversal flows occur. 

The injectors opening time intervals are set by 
the ECU, in dependence of engine speed and load. 
The whole injection cycle takes place in a 720° 

interval, with a 180° delay between each injection 
command. Since in this model we neglect the 
injectors opening and closing transients, we express 
the injectors flow section as ET·Ainj, where ET 
(Energizing Time) is a square signal with a variable 
period and equal to 0 or 1 depending on injection 
timings. This simplification does not introduce a 
considerable error, while reduces the system order 
and computational effort. As critical flow condition 
always holds, the injection mass flow has to be 
calculated applying equation (4). 

Equations (1)-(7) can be rewritten in a state 
space form: 
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where aii are constant coefficients. The set of inputs 
and state variables is: 

( ) [ ], T

cc railx t p p= ,  (9) ( ) [ ], T

tanku t p d.c.,ET=

where pcc, prail and ptank are the control circuit, 
common rail and tank pressures respectively. The 
system of non linear equations (8) can be solved 
given the inputs and the initial conditions, and 
completely describes the system dynamics in terms 
of control volume pressures. 

3 A GENERALISED PREDICTIVE 
CONTROL LAW FOR THE 
RAIL PRESSURE 
REGULATION 

Model Predictive Control techniques are based on 
the idea of predicting output from a system model 
and then to impress a control action able to drive the 
predicted output to a reference trajectory (Rossiter). 
We assume that the system is represented by an 
ARIMAX (AutoRegressive Integrated Moving 
Average eXogenous) model:  

( ) ( ) ( ) ( )1 1( ) 1A q y t B q u t tξ− −⋅ = ⋅ − + ∆  (10) 
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Figure 2: The GPC scheme for the rail pressure control 
 
where u(t), y(t), and ξ(t) are the control action, the 
system output and a zero mean white noise 
respectively, A(q-1) and B(q-1) are polynomials in the 
shift operator q-1, and ∆ is the discrete derivative 
operator (1-q-1). The corresponding j-step optimal 
predictor is (Rossiter): 

( ) ( ) ( )

( ) ( )

1

1

ˆ | 1j

j

y t j t G q u t j

                     F q y t

−

−

+ = ⋅ ∆ + −

+ ⋅

+
 (11) 

where Gj(q-1) and Fj(q-1) are polynomials in the shift 
operator q-1. Let f(t+j) be the component of y(t+j), 
which only depends on known values at time t. We 
can express (11), for j=1, …, N, in matrix form as 
ŷ = Gu + f% , where ŷ = [ŷ(t+1), …, ŷ(t+N)]T,  
ũ = [∆u(t), …, ∆u(t+N-1)]T, and f = [f(t+1), …, 
f(t+N)]T and G is a lower triangular N×N matrix. If 
w = [w(t+1), w(t+2), …, w(t+N),]T is a sequence of 
future reference-values, we introduce a cost function 
taking into account the future errors: 

( ) ( ){ }T TJ E λ= − − +Gu + f w Gu + f w u u% % % %

)

 

where λ(j) is a sequence of weights on future control 
actions. The minimization of the cost function J with 
respect of ũ gives the optimal control law for the 
prediction horizon N: 

( ) (
1T Tu G G I G w fλ
−

= + −%  (12) 

As the first element of ũ is ∆u(t), the current control 
action is: 

( ) ( ) ( )T1u t u t= − + g w - f  (13) 

where gT is the first row of (GTG+λI)-1GT; at each 
step the first computed control action is applied and 
then the optimization process is repeated after 
updating all vectors. 

We apply the above concepts to design a GPC 
for the rail pressure. We assume the d.c. as control 

variable and the rail pressure itself as output 
respectively. As the GPC law gives the change with 
respect of the previous control action, it is necessary 
to use an integrator to get the whole input to be 
applied. Since this signal is bounded in the range 
[0, 100%], we have introduced an anti wind-up 
system to avoid undesired oscillations in the control 
loop. To tune the GPC for the rail pressure, the 
proposed model is linearized considering different 
equilibrium points. Linearization is justified by the 
aim of the control action to keep the pressure close 
to a reference value, in dependence of the working 
conditions, set by the driver power request, speed 
and load. From the state space linearized models we 
derive a transfer function representation that is 
finally discretised by a first order holder, leading to 
a family of ARX models in the following form: 

( ) ( ) ( ) ( )1 1

1 0 11 1a q y t b b q u t− −+ ⋅ = + ⋅ −  

The GPC control that derives is: 

( ) ( ) ( ) ( ) ( )1

1 2 3 4 1u t k w t k k z y t k u t−∆ = + + + ∆ −  

where [k1, k2, k3, k4] depends on N and NU, and the 
related control scheme is depicted in Figure 2. 

4 SIMULATION RESULTS 

We have carried out extensive simulations in 
MATLAB/Simulink environment to evaluate the 
effectiveness of the proposed approach, considering 
different operating conditions, in terms of speed, 
load and rail pressure. 

We have performed a first set of test to check the 
model effectiveness to predict the system behavior. 
Firstly, we have considered constant engine speed 
and load, resulting in constant injectors driving 
command, and constant tank pressure. Then we have 
evaluated the system response to d.c. step variations. 
Figure 3 shows the simulation results for a 40 bar 
tank pressure, 2400 rpm engine speed and 8 ms 
injectors exciting time interval, when two opposite 
6% d.c. variations are applied, the first one starting 
from a 3% value, occurring at 1.5 s and 28 s time 
instants respectively. When applying the first step 
variation, a pilot circuit pressure increment occurs, 
causing the regulator inlet section to stay open 
longer. As a consequence, the larger mean fuel 
inflow coming from the tank raises the rail pressure. 
Conversely, when the d.c. is reduced by the second 
step, the pilot pressure drops and the rail pressure 
diminishes too. A picture magnification points out 
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the pilot and rail pressures oscillating behavior 
within the 100 ms control period: the pressure 
increases when the solenoid valve is opened, while 
decreases when it is closed. Further simulations may 
show that shortening the control period attenuates 
these pressure variations.  

Fig. 4 depicts model output for constant 40 bar 
tank pressure and 9% d.c. and a varying injectors 
driving signal. Simulation starts from a steady state 
condition corresponding to a 2200 engine speed and 
3 ms injectors exciting time interval within the 
injection cycle. At time 4.5 s we have applied a 4000 
rpm speed step, and raised the injection time interval 
to 12 ms, so that the applied d.c. is no longer able to 
maintain the initial rail pressure, because of the more 
injected fuel amount. Besides, the fuel flow between 
main and pilot circuit causes the pilot circuit 
pressure to decrease. At time 21 s we have applied a 
complete cut-off, i.e. we have kept the injectors 
closed in the whole injection cycle: pilot and rail 
pressures rise because the fuel is no more sent to the 
intake manifolds. In conclusion, we observe that the 
accordance of the resulting dynamics with the 
expected behavior shows the model validity. 

A second set of tests investigates the GPC 
performances. To this end, we consider a 100% set-
point variation, to evaluate the rail pressure 
response. We have tuned all the tested controllers 
referring to models linearized at the starting 
equilibrium point. Figures 5 and 6 show the rail 
pressure dynamics when the system is controlled by 
a GPC with N = 5 (0.5s) and N = 15 (1.5s) prediction 
horizons respectively, and a NU = 1 (0.1s) control 
horizon for both cases. We have also compared the 
linear and nonlinear model responses with the above 
controllers. Clearly, increasing prediction horizon 
results in a sluggish response, while considerably 
decreases pressure overshoot, which is strongly 
desirable. Further simulations may show that 
increasing the control horizon does not result in a 
better rail pressure behavior. 

Figures 7 and 8 compare the GPC with a 
standard PI controller, tuned according the Ziegler-
Nichols rules. To evaluate the controllers robustness 
to model uncertainties, we have tuned them by 
considering a 3 bar rail working pressure (Figure 7). 
Then we have assumed a different operating 
condition (Figure 8), holding the same parameters. 
We have considered the linear system response for 
the GPC, since it almost coincides with the nonlinear 
one. Compared with the PI controller, the proposed 
regulator grants lower pressure overshoot and 
oscillation amplitude. PI parameters are tuned for a 
narrow working range, while the fact that the 
dynamic performances of the GPC are independent 
from the set-point demonstrates the superiority and 
robustness of such control approach. 

5 CONCLUSIONS 

In this paper we have presented a simple lumped 
parameters control-oriented model of a CNG 
injection system. The model equations describe the 
main fluid-dynamic phenomena and require a 
minimal set of geometric data. By using the model 
equations, we have designed a linear Generalized 
Predictive Controller to regulate the injection 
pressure, and then we have compared its 
performances with those obtained with a standard PI 
controller. The proposed controller structure is 
simple enough for on-line computation and 
simulation results validate the control approach. 
Future work will concern a narrow model validation 
through lab tests and the implementation of a 
nonlinear control strategy. 
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Figure 3: Control and rail pressures for duty cycle step 
variations and constant engine speed and injectors ET 
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Figure 5: Rail pressure dynamics when the system is 
controlled by a GPC with N = 5 (0.5s) and a NU = 1 (0.1s) 
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Figure 7: System step responses when controlled by a PI 
regulator and a GPC with N = 15 (1.5s) and NU = 1 (0.1s) 
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Figure 4: Control and rail pressures for engine speed and 
injectors ET step variations and constant duty cycle. 
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Figure 6: Rail pressure dynamics when the system is 
controlled by a GPC with N = 15 (1.5s) and NU = 1 (0.1s) 
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Figure 8: System step responses when controlled by a PI 
regulator and a GPC with N = 15 (1.5s) and NU = 1 (0.1s), 
assuming model uncertainties 
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