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Abstract: Two models of mini-flying robots with four rotors called X4-flyer presented and studied for the stabilization.
Both cases with and without motion planning are proposed in this paper. The first is called inertial model with
axes orientation and the second is called the inertial model without axes orientation. The control algorithm of
the X4-flyer is based on the Lyapunov method and obtained using the backstepping techniques. This enabled
to stabilize the engine in hovering and to generate its trajectory. The system behavior using the proposed
control law is described through numerical simulations.

1 INTRODUCTION

The automatic control of flying machines has at-
tracted the attention of many researches in the past
few years. Generally, the control strategies are based
on simplified models which have both a minimum
number of states and a minimum number of input.
These reduced models should retain the main features
that must be considered when designing control laws
for real aerial vehicles. The rotorcraft is one the most
complex flying machines. Its complexity is due to
the versatility and manoeuvrability to perform many
types of tasks (Castillo et al., 2004). Very little atten-
tion has been done on the development of aerial ro-
botic platforms (Altug, 2003) (Altug et al., 2003) (Al-
tug et al., 2002) (Hamel et al., 2002) (Zhang, 2000).
Such platforms have considerable commercial poten-
tial for surveillance and inspection roles in dangerous
environments.

Modelling and controlling aerial vehicles (blimps,
mini rotorcraft) are the principal preoccupation of our
laboratory (LSC). In this topic, a mini-UAV is de-
velopped by the LSC-group taking into account in-
dustrial constraints. The aerial flying engine could
not exceed2kg in mass, a wingspan of50cm with
a 30mn flying-time (see figure 1). Within this optic,
it can be held that our system belongs to a family of
mini-UAV. It is an autonomous hovering system, ca-
pable of vertical takeoff, landing, lateral motion and
quasi-stationary (hover or near hover) flight condi-

tions. Compared to helicopters (Altug, 2003) (Altug
et al., 2003) (Altug et al., 2002), the four rotors ro-
torcraft called X4-flyer has some advantages (Hamel
et al., 2002) (Pound et al., 2002): given that two mo-
tors rotate counter clockwise while the other two ro-
tate clockwise, gyroscopic effects and aerodynamic
torques tend, in trimmed flight, to cancel. An X4-flyer
operates as an omnidirectional UAV. Vertical motion
is controlled by collectively increasing or decreasing
the power for all motors. Lateral motion, inx direc-
tion or in y direction, is achieved by differentially
controlling the motors generating a pitching/rolling
motion of the airframe that inclines the collective
thrust (producing horizontal forces) and leads to lat-
eral accelerations.

Several recent work was completed for the design
and control in pilot-less aerial vehicles domain such
that Quadrotor (Altug, 2003) (Altug et al., 2003) (Al-
tug et al., 2002), X4-flyer (Hamel et al., 2002), mesi-
copter (Kroo and Printz, ) and hoverbot (Borenstein,
). Also, related models for controlling the VTOL
aircraft are studied by Hauser and al (Hauser et al.,
1992). A model for the dynamic and configuration
stabilization of quasi-stationary flight conditions of a
four rotors vertical take-off and landing (VTOL) was
studied by Hamel (Hamel et al., 2002) where the dy-
namic motor effects are incorporating and a bound of
perturbing errors was obtained for the coupled sys-
tem. The stabilization problem of a four rotors rotor-
craft is also studied and tested by Castillo (Castillo
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et al., 2004) where the nested saturation algorithm is
used and application of the theory of flat systems by
Beji et al (Beji et al., 2004).

Figure 1: Conceptual form of the four rotors rotorcraft.

In this paper, the backstepping controllers and mo-
tion planning are combined to stabilize the helicopter
by using the point to point steering stabilization. Af-
ter having presented the study of modeling and the
description of the configuration in the second section.
Third section describes the dynamics of the system
which treats the two models with and without axes
orientation. Backstepping controllers is described for
two models of the X4-flyer in the fourth section. A
strategy to solve the tracking problem through point
to point steering is shown in the fifth section. In the
sixth section simulation results are introduced for two
models. Finally, conclusion and future work are given
in the last section.

2 CONFIGURATION
DESCRIPTION AND
MODELLING

Unlike regular helicopters that have variable pitch an-
gles, an engine has fixed pitch angle rotors and the
rotor speeds are controlled to produce the desired lift
forces. Basic motions of the four rotors rotorcraft
can described using the figure 2. Vertical motion is
controlled by collectively increasing or decreasing the
power for all motors. Lateral motion, inx direction or
in y direction, is not achieved by differentially con-
trolling the motors generating a pitching/rolling mo-
tion of the airframe that inclines the collective thrust
(producing horizontal forces) and leads to lateral ac-
celerations (case of the X4-flyer). But, two engines
of direction are used to permute between thex andy
motion.

We consider a local reference airframeℜG =
{G,Eg1 , E

g
2 , E

g
3} attached to the mass centerG of the

vehicle. The mass center is located at the intersec-
tion of the two rigid bars, each of which supports two
motors. Equipments (controller cartes, sensors, etc.)

Figure 2: 3D X4-flyer model.

onboard are placed not far fromG. The inertial frame
is denoted byℜO = {O,Ex, Ey, Ez}. A body fixed
frame is assumed to be at the center of gravity of the
X4-flyer, where thez axis is pointing upwards. This
body axis is related to the inertial frame by a position
vector(x, y, z) and 3 Euler angles(θ, φ, ψ) represent-
ing pitch, roll and yaw respectively. A Euler angle
representation given in (1) has been chosen.

R =

0B� CψCθ CθSψ −Sθ

SφCψSθ − SψCφ SθSψSφ + CψCφ CθSφ

SθCψCφ + SψSφ CφSθSψ − CψSφ CθCφ

1CA
(1)

WhereCθ andSθ representcos θ andsin θ repec-
tively.

Each rotor produces moments as well as vertical
forces. These moments have been experimentally ob-
served to be linearly dependent on the forces for low
speeds. There are four/five input forces and six out-
put states(x, y, z, θ, φ, ψ) therefore the X4-flyer is an
under-actuated system. The rotation direction of two
of the rotors are clockwise while the other two are
counterclockwise, in order to balance the moments
and produce yaw motions as needed.

In the present work, two X4-flyer models are pre-
sented, the first is called the inertial model with axes
orientation, the second one is the inertial model with-
out axes orientation. For the model without axes ori-
entation, the rotors 2 and 4 are actuated in clock-
wise direction, the remain rotors, the rotors 1 and 3
are in the contrary actuated in the inverse direction
in order to guarantee total balance in yaw (figure 4).
The main feature of the presented X4-flyer (called the
XSF) in comparison with the existing quadrirotors, is
the swiveling of the actuators supports 1 and 3 around
the axis of pitching (anglesξ1 andξ3). This swiveling
ensures either the horizontal rectilinear motion or the
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rotational movement around the yaw axis or a combi-
nation of these two movements which gives the turn
(see the figure 3), as well as the direction of rotation
of the rotors implies that rotors 1 and 2 turn clockwise
and rotors 3 and 4 turn in the contrary direction of the
needles of a watch.

Figure 3: Rotor rotations with canceled yaw motions.

3 MOTION DYNAMIC

We consider the translation motion ofℜG with re-
spect to(wrt) ℜO. The position of the center of
masswrt ℜO is defined byOG = (x y z)

T , its
time derivative gives the velocitywrt toℜO such that
dOG
dt

= (ẋ ẏ ż)
T , while the second time derivative

permits to get the accelerationd
2OG
dt2

= (ẍ ÿ z̈)
T .

In the following, the model with axes orientation is
described, then the model without axes orientation is
given.

3.1 Dynamic Motion of the Model
with Axes Orientation

Currently, the model is a simplified one’s. The con-
straints and the gyroscopic torques are neglected. The
aim is to control the engine vertically(z) axis and hor-
izontally according tox andy axis. The dynamics of
the vehicle, represented on figure 2, is modelled by
the system of equations (2), (Beji et al., 2005).

mẍ = SψCθu2 − Sθu3

mÿ = (SθSψSφ + CψCφ)u2 + CθSφu3

mz̈ = (SθSψCφ − CψCφ)u2 + CθCφu3 −mg
(2)

Wherem is the total mass of the vehicle. The vec-
toru2 andu3 combines the principal non conservative
forces applied to the engine airframe including forces
generated by the motors and drag terms. Drag forces
and gyroscopic due to motors effects will be not con-
sidered in this work. The lift (collective) forceu3 and
the direction inputu2 are such that

(

0
u2

u3

)

= f1é1 + f2e2 + f3é3 + f4e4 (3)

with fi = kiω
2
i , ki > 0 is a given constant andωi

is the angular speed resulting of motori. Let

é1 =

(

0
Sξ1
Cξ1

)

ℜG

; é3 =

(

0
Sξ3
Cξ3

)

ℜG

e2 = e4 =

(

0
0
1

)

ℜG

(4)

Then we deduce:
u2 = f1Sξ1 + f3Sξ3
u3 = f1Cξ1 + f3Cξ3 + f2 + f4

(5)

ξ1 andξ3 are the two internal degree of freedom of
rotors 1 and 3, respectively. These variables are con-
trolled by dc-motors and bounded−20o ≤ ξ1, ξ3 ≤
+20o. e2 ande4 are the unit vectors alongEg3 which
imply that rotors 2 and 3 are identical of that of a clas-
sical Quadrotor (not directional).

3.2 Rotational Motion of the Model
with Axes Orientation

The rotational motion of the X4 bidirectional flyer
will be defined wrt to the local frame but ex-
pressed in the inertial frame. According to Classi-
cal Mechanics, and knowing the inertia matrixIG =
diag (Ixx, Iyy, Izz) at the centre of the mass.

θ̈ = 1

IxxCφ
(τθ + IxxSφφ̇θ̇)

φ̈ = 1

IyyCθCφ
(τφ + IyySφCθφ̇

2 + IyySθCφθ̇φ̇)

ψ̈ =
τψ
Izz

(6)
With the three inputs in torque

τθ = l (f2 − f4)
τφ = l (f1Cξ1 − f3Cξ3)
τψ = l (f1Sξ1 − f3Sξ3)

(7)

wherel is the distance fromG to the rotori. The
equality from (6) is ensured, meaning that

η̈ = ΠG (η)
−1

[τ − Π̇G (η) η̇] (8)

With τ = (τθ, τφ, τψ)
T as an auxiliary inputs.

And

ΠG (η) =

(

IxxCφ 0 0
0 IyyCφCθ 0
0 0 Izz

)

(9)

As a first step, the model given above can be
input/output linearized by the following decoupling
feedback laws

τθ = −IxxSφφ̇θ̇ + IxxCφτ̃θ
τφ = −IyySφCθφ̇

2 − IyySθCφθ̇φ̇+ IyyCθCφτ̃φ
τψ = Izz τ̃ψ

(10)
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and the decoupled dynamic model of rotation can
be written as

η̈ = τ̃ (11)

with τ̃ = (τ̃θ τ̃φτ̃ψ)
T

Using the system of equations (2) and (11), the dy-
namic of the system is defined by

mẍ = SψCθu2 − Sθu3

mÿ = (SθSψSφ + CψCφ)u2 + CθSφu3

mz̈ = (SθSψCφ − CψCφ)u2 + CθCφu3 −mg

θ̈ = τ̃θ; φ̈ = τ̃φ; ψ̈ = τ̃ψ
(12)

3.3 Dynamic Motion of the Model
without Axes Orientation

We follows the same steps as the model with axes ori-
entation and finally we finds for the dynamics of the
X4-flyer without the axes orientation:

mẍ = −Sθu3

mÿ = CθSφu3

mz̈ = CθCφu3 −mg
(13)

3.4 Rotational Motion of the Model
without Axes Orientation

The three inputs in torque are given by:

τθ = l (f2 − f4)
τφ = l (f1 − f3)
τψ = lk (f1 − f2 + f3 − f4)

(14)

The vertical controller is:u3 = f1 + f3 + f2 + f4

Using the translational and rotational motions (13)
and (14), equations of the dynamic are detailed by

mẍ = −Sθu3

mÿ = CθSφu3

mz̈ = CθCφu3 −mg

θ̈ = τ̃θ; φ̈ = τ̃φ; ψ̈ = τ̃ψ

(15)

Remark: As shown in the system (2), the three inputs
torque see the equation (7), the yawτψ is equal to
zero if we takeξ1 = ξ3 = 0. Then, with the proposed
sense of rotations (see figure 3), we can not generate
yaw motions if rotors 1 and 3 are not oriented. With
ξ1 = ξ3 = 0, to obtain yaw motions, the rotor sense
of rotations is identical of that of the Quadrotor.
Then rotors 1 and 3 are with the same sense of rota-
tions, while rotors 2 and 4 are in opposite sense (see
figure 4).
With or without axes orientation, the rotational part
can be easily linearized with static feedback control
laws. Then, we get

θ̈ = u4

φ̈ = u5

ψ̈ = u6

(16)

Figure 4: Rotor rotations with yaw motions.

with

u4 = 1

IxxCφ
(τθ + IxxSφφ̇θ̇)

u5 = 1

IyyCθCφ
(τφ + IyySφCθφ̇

2 + IyySθCφθ̇φ̇)

u6 = 1

Izz
τψ

(17)

4 BACKSTEPPING BASED
CONTROLLER

Backstepping controllers are especially useful when
some states are controlled through other states. As
it was observed in the previous section, in order to
control thex and y motion of the X4-flyer, tilt an-
gles need to be controlled. Therefore a backstepping
controller has been developed in this section. Similar
ideas of using backstepping with visual serving have
been developed for a traditional helicopter by Hamel
and Mahony (Hamel and Mahony, 2000). As well as
the backstepping controllers was applied for Quadro-
tor by Altug et al (Altug, 2003) (Altug et al., 2003)
(Altug et al., 2002).

4.1 ”Backstepping” Application to
the Model without Axes
Orientation

4.1.1 Altitude and yaw control

The altitude and the yaw on the other hand, can be
controlled by a PD controller. With through the equa-
tion of the following movement(z).

mz̈ = CθCφu3 −mg (18)

The control of the vertical position (altitude) can be
obtained considering the following control input

u3 = m
(

g + z̈r − k1
z (ż − żr) − k2

z (z − zr)
)

(19)

with

z̈ = z̈r − k1
z (ż − żr) − k2

z (z − zr) (20)
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zr is the desired altitude. The yaw attitude can be
stabilized to a desired value with the following track-
ing feedback control

u6 = ψ̈r − k1
ψ(ψ̇ − ψ̇r) − k2

ψ (ψ − ψr) (21)

wherek1
z , k2

z , k1
ψ, k2

ψ are the coefficients of stable
polynomial.

4.1.2 Roll control (φ, y)

First we notice that motion in they direction can
be controlled through the changes of the roll angle.
These variables are related by the cascade system

{

mÿ = CθSφu3

φ̈ = u5

(22)

This leads to a backstepping controller fory − φ
control given by

u5 =
1

u3CθCφ
(5y + 10ẏ + u3Θθ,φ) (23)

where

Θθ,φ =

(

9SφCθ + 4φ̇CφCθ − φ̇2SφCθ−

2θ̇SφSθ + φ̇θ̇CφSθ − θ̇φ̇CφSθ + θ̇2SφCθ

)

(24)

4.1.3 Pitch control(θ, x)

To develop a controller for motion along thex axis,
similar analysis is needed. The equation of motion of
the X4-flyer onx is given as

{

mẍ = −Sθu3

θ̈ = u4

(25)

This leads to a backstepping controller forx − θ
control given by

u4 =
1

u3Cθ
(−5x− 10ẋ+ u3Θθ) (26)

where

Θθ = 9Sθ + 4θ̇Cθ − θ̇2Sθ (27)

4.2 Model with Axes Orientation

4.2.1 Control input for (z − y) motions

We propose to control motion alongy and z direc-
tions throughu3 andu2, respectively. So we have the
proposition (28).

(

ÿ
z̈

)

=
1

m
H

(

u2

u3

)

−

(

0
g

)

(28)

where

H =

(

SψSθSφ + CψCφ CθSφ
SψSθCφ − CψSφ CθCφ

)

(29)

For the given conditions inψ and θ , the 2 by 2
matrix (29) is invertible. Then a nonlinear decou-
pling feedback permits to write the following decou-
pled linear dynamics

ÿ = νy
z̈ = νz

(30)

Then we can deduce from (30) the linear controller

νy = ÿr − k1
y (ẏ − ẏr) − k2

r (y − yr)
νz = z̈r − k1

z (ż − żr) − k2
z (z − zr)

(31)

With thekiy andkiz are the coefficients of a polyno-
mial of Hurwitz

Proposition: Consider

(ψ, θ) ∈
]

−
π

2
,
π

2

[

(32)

with the controllers (33) and (34)

u2 =
Cφ

Cψ
(mÿ) −

Sφ

Cψ
(m (z̈ + g)) (33)

u3 =
−SψSθCφ+CψSφ

CθCψ
(mÿ) +

SψSθSφ+CψCφ
CθCψ

(m (z̈ + g))

(34)

The dynamic ofy andz are linearly decoupled and
exponentially-asymptotically stable with the appro-
priate choice of the gain controller parameters.

4.2.2 Control input for the x motion

To control the movement along thex axis, the back-
stepping controller is used. The noted controllerx−θ
is given by the equation (35):

{

mẍ = SψCθu2 − Sθu3

θ̈ = u4

(35)

One supposes it exists a timeT 1
f such that∀t∈

[

T0, T
1
f

]

, u3 > 0, then the dynamic ofx is decou-

pled under the following controller

u4 =
1

u3Cθ + u2SθSψ
(−5x− 10ẋ+ u3Θθ + u2Θθ,ψ)

(36)
where

Θθ = 9Sθ + 4θ̇Cθ − θ̇2Sθ (37)

and

Θθ,ψ =

�
9SψCθ + 4θ̇CψCθ − ψ̇

2SψCθ−

2ψ̇SψSθ + ψ̇θ̇CψSθ − θ̇ψ̇CψSθ + θ̇2SψCθ

�
(38)

ICINCO 2005 - ROBOTICS AND AUTOMATION

20



5 TRAJECTORY GENERATION
AND POINT TO POINT
STEERING

Due to the structure limit of the X4-flyer, motion can
be asserted only in straight line along thex, y andz
directions. In our case, that is sufficient to navigate in
a region. Otherwise, an other version of the engine is
under study by the group. The version flyer is to make
easy manoeuvres in corners with arc of circle. In the
following, we solve the tracking problem as point to
point steering one over a finite interval of time. Then
we take each ending point with its final time as a new
starting point.

0 2 4 6 8
0

5

10

15

z−
re

f (
m

)

time (s)

10 15 20 25
0

5

10

15

time (s)

x−
re

f (
m

)

20 25 30 35
0

5

10

15

y−
re

f (
m

)

time (s)

0
10

20

0
10

20
0

5

10

x−displacementy−displacement

z−
di

sp
la

ce
m

en
t

Figure 5: Motion planning withhd = 10m.

Figure 5 illustrate the reference trajectory along the
x, y andz directions. As we see, the X4-flyer will fly
in thez direction followed by thex−motion and the
y−motion. The reference trajectory is parameterized
as

zr(t) = hd
t5

t5 + (T 1
f − t)5

(39)

wherehd is the desired altitude and(T 1
f ) the final

time. In order to solve the point to point steering con-
trol, the end point of the trajectory (39) can be adopted
as initial point to move alongx, then we have

xr(t) = hd
(t− T 1

f )5

(t− T 1
f )5 + (T 2

f − (t− T 1
f ))5

(40)

As soon as foryr (t)

yr(t) = hd
(t− T 2

f )5

(t− T 2
f )5 + (T 3

f − (t− T 2
f ))5

(41)

The constraints to perform these trajectories are
such that































zr(0) = xr(T 1
f ) = yr(T 2

f ) = 0
zr(T 1

f ) = xr(T 2
f ) = yr(T 3

f ) = hd
żr(0) = ẋr(T 1

f ) = ẏr(T 2
f ) = 0

żr(T 1
f ) = ẋr(T 2

f ) = ẏr(T 3
f ) = 0

z̈r(0) = ẍr(T 1
f ) = ÿr(T 2

f ) = 0
z̈r(T 1

f ) = ẍr(T 2
f ) = ÿr(T 3

f ) = 0

(42)

Minimizing the time of displacement implies that
the X4-flyer accelerates at the beginning and deceler-
ates at the arrival.

6 SIMULATION RESULTS

Two engine models were studied and controlled us-
ing the backstepping technique which(a) present the
model with axes orientation and(b) the model with-
out axes orientation.
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Figure 6: Displacement errors: (a) with axes orientation -
(b) without axes orientation.

Figure 6 show displacement errors according to all
the directions for the models with and without axes
orientations. It is noticed that the error thus tends to
zero towards the desired positions.

Figure 7, we notices that the anglesθ andφ control
the engine for displacements along the axesx andy.
These angles tend to zero value. It is also shown in
figure 8(a) that we can stabilize the system to make a
following movement by the swivelling of the engine
actuators 1 and 3.

According to the figure 8, which represent our ve-
hicle input, we remark that the inputu3 = mg at the
equilibrium state is always verified. The inputsu2,
u4 andu5 tend to zero after having carried out the de-
sired orientation of the vehicle. These Figure 8 also
show the effectiveness of the used controllers laws.
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Figure 7: The pitchθ and the rollφ: (a) with axes orienta-
tion - (b) without axes orientation.
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Figure 10: Tracking errors without motion planning(zr =
xr = yr = 5m): (a) with axes orientation - (b) without
axes orientation.

Figures 9,10,11 and 12, show the system without
motion planning. Motion in different directionsz, x
andy is also tested and shown by figure 9. In addition
we show that the behavior of errors, given by figure
10 is verified. At the equilibrium, attitudes ofθ andφ
are equal to zero (figure 11).
Without motion planning, the amplitude of controllers
is important (figure 12) and a maximum of energy is
asserted which is requested for flying vehicles.
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Figure 11: The pitchθ and the rollφ for the vehicle without
motion planning: (a) with axes orientation - (b) without axes
orientation.

7 CONCLUSION

The study of the stabilization with and without a pre-
defined trajectory of the mini-flying robot with four
rotors (X4-flyer) was discussed in this paper. The
importance of the trajectory generation and its con-
sequences with respect to amplitude of the used con-
troller, was highlited. With the proposed motion plan-
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Figure 12: Inputsu2, u3, u4 andu5 for the vehicle without
motion planning: (a) with axes orientation - (b) without axes
orientation.

ning, actuator saturations can be overcomed. Con-
sequently, economy in energy of batteries can be as-
serted during the fly. The backstepping technique was
successfully applied and enabled us to design control
algorithms ensuring the vehicle displacement from an
initial position to a desired position. The backstep-
ping approach used requires the well knowledge of
the system model and parameters. Future work is
to develop the fuzzy controller based algorithm (does
not require the good knowledge of the model) (Maaref
and Barret, 2001) and to make the comparison of both
controllers. A realization of a control system based on
engine sensors information is envisaged.
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