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Abstract: In the paper a Java based toolbox has been presented. It is used in teaching of a special case of nD systems
- Linear Repetitive Processes (LRP). Its predecessor has been developed in the Matlab environment so to use
it a Matlab licence is necessary. This restriction has been removed after making it available in the Internet
as a Java based program. Now a student, browsing a web page, may define a model together with initial /
boundary conditions, then simulate a process as a continuous or discrete case, analyze the results in graphical
or numerical form, modify visualization parameters of the plots and finally print the results. In the paper an
overview of the tool has been given.

1 INTRODUCTION

The multidimensional (Roesser, 1975), (Fornasini
and Marchesini, 1978) (nD) nature of dynamics
of Linear Repetitive Processes (Rogers and Owens,
1992) is much more difficult to understand for stu-
dents than dynamics of classical, e.g. 1-dimensional
(1D) systems. Propagation of dynamics in more than
one dimension, a built-in interactions of previous and
current system variables (called passes), causes ad-
ditional difficulties. In a repetitive process, on each
pass, an output, termed thepass profile, is produced
which acts as a forcing function on, and hence con-
tributes to the dynamics of the next pass profile. The
2D systems structure of a repetitive process arises
from information propagation in (i) the pass to pass
direction, and (ii) along a given pass. Such a process
may be presented graphically – see Figure 1 below.

We quote that the explicit interaction between suc-
cessive pass profiles is the source of the novel control
(and numerical) problems for these processes in that
the output sequence of pass profiles can contain oscil-
lations that increase in amplitude in the pass to pass
direction.

Moreover, we define more than one stability no-
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tion for repetitive processes (unlike as in classical 1D
dynamic systems). A given process may be stable as-
ymptotically, stable along the pass, stable horizontally
and vertically. All of them have clear interpretation
in physical processes. This fact may potentially de-
crease students understanding of the problem.

Even ’simple’ processes (SISO case, ’smooth’ con-
trol and initial conditions, ’rounded’ matrices, etc.)
often cause ’unpredictable’ results of simulations.
Another example is that we often observe a kind of
wave oscillation that depends on the length of pass
and dynamic properties of a given process. The num-
ber of such ’anomalies’ seemed to be enough motiva-
tion to design and develop a proper educational tool.

Above we have mentioned only a few difficulties,
that we often observe during students classes. The
toolbox, in our intention, should help students in their
in-deep understanding of a fascinating nature of repet-
itive processes.

1.1 Discrete case

The state space model of a discrete linear repetitive
process has the following form (Rogers and Owens,
1992)

xk+1(p + 1) = Axk+1(p) + B uk+1(p) + B0 yk(p)

yk+1(p) = C xk+1(p) + D uk+1(p) + D0 yk(p)

(1)
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where indicesk = 0, 1, . . . andp = 0, 1, . . . , α − 1
represent pass number(s) and points (position) on the
given pass respectively and

• xk(p) is the state vector of dimensionn × 1,

• yk(p) is the output vector, called the pass profile
vector, of dimensionm × 1,

• uk(p) is the bounded input vector of dimensionr×
1.

The real matrices are then as follows

An×n, Bn×r, Bn×m
0 , Cm×n, Dm×r, Dm×m

0 .

The constantα is a finite and fixed number called
the pass length. This model, may be clearly recog-
nized as a 2D state-space model which resembles the
well known Roesser model (Roesser, 1975). It also
posses some features of the second main 2D state-
space model, i.e. the Fornasini-Marchesini one (For-
nasini and Marchesini, 1978).

To complete the process description, it is necessary
to specify the state and pass initial conditions, i.e. the
initial state vector on each passxk+1(0), k = 0, 1, . . .
and the initial pass profiley0(p), p = 0, 1, . . . , α− 1.
The simplest possible case is

xk+1(0) = dk+1(0), k = 0, 1, . . .

y0(p) = f(p), p = 0, 1, . . . , α − 1 (2)

wheredk+1 is ann × 1 vector with constant entries
and f(p) is an m × 1 vector whose entries are
known bounded functions of discrete timep. These
conditions are frequently called, by analogy to the
classical 1D systems, initial conditions. However,
in fact they are clearly boundary conditions in their
nature.

A more general form of (2) called dynamic initial
conditions (extended state initial conditions) for (1) is
defined as

xk+1(0) = dk+1(0) +

α−1∑

j=0

Kj yk(j). (3)

Note. The process state space model (1) has the so–
called unit memory property, i.e. it is only the pass
profile on the previous pass which (explicitly) con-
tributes to the current one. Non–unit memory linear
repetitive processes are the natural generalization of
(1) where a finite number, sayM > 1, of previous
pass profiles (explicitly) contribute to the current one.
Such processes are not considered here since the re-
sults given for the unit memory special case general-
ize in a natural manner.

1.2 Continuous case

The state space model of a differential linear repetitive
process has the following form over0 ≤ t ≤ α, k =
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Figure 1: Schematic illustration of the dynamics of a repet-
itive process (1) with extended version of state initial con-
ditions (3)

0, 1, . . . (Rogers and Owens, 1992)

ẋk+1(t) = Âxk+1(t) + B̂uk+1(t) + B̂0yk(t)

yk+1(t) = Ĉxk+1(t) + D̂uk+1(t) + D̂0yk(t).

(4)

Initial or boundary conditions are defined similarly
as in the discrete case and due to space limitations we
omit them here.

To simulate (4) one must first build a discrete
equivalent of (4), hence the problem considered now
is as follows: given a repetitive process of the form
(4), construct a discrete approximation of the proper
form overp = 0, 1, . . . , α − 1, k = 0, 1, . . . i.e the
model as in (1) and (2).

The matrices in the discrete case (1) are to be com-
puted from those of (4) by formulas determined by
a particular numerical approximation method used
(Gramacki et al., 2002), (Gramacki, 2000), (Rogers
et al., 2002), (Gałkowski et al., 1999). The approxi-
mate solution generated by (1) and (2), should be as
close as possible (in a well defined sense) to the exact
solution obtained from (4) (assuming that it is known
or may be calculated with negligible errors). More-
over, crucial system properties of (4) such as stabil-
ity, should be preserved in (1) and (2) or conditions
(which can be verified numerically) under which this
is true should be given.

Figure 1 gives schematic illustration of the evolu-
tion of the dynamics of a repetitive process.

2 THE TOOLBOX

In this section we present some main features of the
toolbox (Szumacher, 2004) and describe some se-
lected technical details of its implementation.
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2.1 Functionality

In its current state, the toolbox can, amongst other
tasks, simulate and display the response of differen-
tial and discrete linear repetitive processes and com-
pute, using a user specified numerical integration
technique, a discrete approximation to the dynamics
of a differential process. Using the toolbox in both
Java and Matlab versions we may:

Figure 2: The Main Navigation Window of the Matlab
based version of the toolbox. A MIMO (4 inputs, 4 states,
4 outputs), continuous process (in a state ready for simula-
tion) is shown. Some elements do not appear in the Java
based version. See Table 1 for details of those differences.

• define a discrete or continuous repetitive process in
the form of system matrices in (1) or (4),

• in the case of a continuous process (4), choose a
discretization method (e.g. trapezoidal 2D approx-
imation). For a discrete case we simple choose”no
disscretization”,

• based on process dimensions determined from sys-
tem matrices, define inputsu, initial statesxk+1(0)
and initial pass profile(s)y0(p) (2) from a number
of predefined values,

• define inputsu, initial statesxk+1(0) and initial
pass profile(s)y0(p) from scratch (matrix variables
of proper dimensions, taken directly from a Mat-
lab’s workspace). We may also use extended ver-
sion of state initial condition (3)(available only in a
Matlab based version),

• define ”spatial” characteristics of a process, i.e.
how many passes are to be simulated and how long
each pass is. For a discrete case, the last value is
defined as a number of points on the pass. For a
continuous case it is defined as two numbers: pass
length (in a unit of measure) and discretization pe-
riod,

• simulate a described process,

• analyze simulation results as 3D and/or 2D (Matlab
version only) plots of state(s)x and pass profile(s)
y. If necessary, one may easily narrow up and down
to a required subset of passes and a required subset
of points on a given pass,

• analyze simulation results by inspecting numerical
outputs in a dedicated Java based window or by in-
specting Matlab’s workspace variables,

• analyze stability conditions of a repetitive process
(Matlab based version only).

Figures 2 to 6 show some selected windows of both
versions of toolboxes. The Main Navigation Window
of the Java based version, due to space limitations and
its availability on the Internet has been omitted.

Figure 3: The Matlab based version. A 3D plot of results
of simulation of a given LRP process. Note the elements
which help ’visualization’ of the resulted plots (vertical and
horizontal strollers and edit boxes on the right side of the
window). The LRP process is the same as on Figure 4

2.2 Data Format Specification

Here we describe the data structures specification as
well as some other related tasks necessary to simulate
a discrete model defined by (1) and (2). The basic
user supplied data required is as follows:

• the matrices which define the LRP model,

• the pass lengthα,

• the number of passes, sayK, over which the simu-
lation
is to be run,

• the sequence of input vectors
uk(p), k = {0, 1, . . . K}, 0 ≤ p ≤ α,

• the initial state vector sequencexk(0), k =
{0, 1, . . . K},
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Figure 4: The Java based version. A 3D plot of results of
simulation of a given process. Note the elements which help
’visualization’ of the resulted plots (vertical and horizontal
strollers ,edit boxes and radio buttons on the right side of
the window). The LRP process is the same as on Figure 3

• the initial pass profiley0(p), 0 ≤ p ≤ α,

• the sampling periodT .

Note: According to the convention adopted in the de-
velopment stage, the first pass is numbered 0 (zero).

Assuming this data has been supplied, the toolbox cal-
culates:

• the initial state vector for each pass
xk(p), k = {0, 1, . . . K}, 0 ≤ p ≤ α,

• the pass profile at each instant along each pass
yk(p), k = {0, 1, . . . K}, 0 ≤ p ≤ α.

GivenT andα, the number of pointsP is calculated
according the following formula:P = (α/T ) + 1
(rounded to integer value if necessary).

Consider now the storage of the sequence of con-
trol vectorsu for each pass. A natural approach would
be to store values of control sequence for a given
pass in an array ofr rows (number of inputs) and
P columns (number of points). Hence there areK
passes and one should simply add a third dimension
to the array. Unfortunately, when the first release of
the toolbox appeared, MATLAB (version 4.2) did not
supported multidimensional (that is forn ≥ 3) ar-
rays. Hence the control sequences for each pass are
stored in one (potentially ’large’) two–dimensional
array where each pass occupiesP respective columns.
The same method is used for the state initial state se-
quencex0, the initial pass profiley0, the computed se-
quence of state vectorsx, and the computed sequence
of pass profilesy. Figure 5 gives a schematic illustra-
tion of the format of these matrices.

To illustrate the computations, consider a discrete–
time process (1) defined by the following matrices

u= Pass0
r × P · · ·

PassK
r × P

x0= Pass0
n × 1 · · ·

PassK
n × 1

y= Pass0
m × P · · ·

PassK
m × P

x= Pass0
n × P · · ·

PassK
n × P

y0 = Pass0
m × P

Figure 5: Format details of input and output vectors for lin-
ear repetitive processes (vectorsu, x0, y0, x, y). r – number
of inputs,n – number of states,m – number of pass profiles
(outputs),P – number of points on a given pass,K – num-
ber of passes.

A =

264 1 −2 −1

3 −5 1

1 −2 0

375B =

264 1 2

−1 −2

3 −1

375
B0 =

264 1 1 1 1

2 2 2 2

−1 −1 −1 −1

375C =

26664 1 1 1

0 0 0

1 1 1

0 0 0

37775
D =

26664 1 2

1 2

−1 −2

−1 −2

37775D0 =

26664 1 1 1 1

−1 −1 −1 −1

1 1 1 1

−1 −1 −1 −1

37775
(5)

herer = 2, n = 3, m = 4. Suppose also thatα = 2,
T = 1 and henceP = (α/T ) + 1 = 3. The inputs
are as follows.

x0 =

24 NaN 1 2

NaN 1 2

NaN 1 2

35← x1

0

← x2

0

← x3

0

y0 =

2664 1 1 1

1 1 1

1 1 1

1 1 1

3775← y1

0

← y2

0

← y3

0

← y4

0

u =

�
NaN NaN NaN 1 1 1 2 2 2

NaN NaN NaN 1 1 1 2 2 2

�
← u1

← u2

(6)

where the superscripts are used to denote the entries
in the corresponding vector. Here we have 3 states,
4 pass profiles and 2 inputs. Then the resulting state
and pass profile vectors for the case ofK = 3 are as
follows

x =

24 NaN NaN NaN 1 7 16 2 7 19

NaN NaN NaN 1 2 10 2 5 4

NaN NaN NaN 1 −4 0 2 −7 12

35
y =

2664 1 1 1 12 14 35 17 20 68

1 1 1 1 1 1 −1 −5 −47

1 1 1 2 4 25 7 10 58

1 1 1 −9 −9 −9 −11 −15 −57

3775
(7)
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whereNaN (not a number) denotes entries in the
relevant matrices which are only necessary for com-
putational information purposes (the control sequence
u and initial statex0 are not defined for pass number
0 for (4).

2.3 Implementation

The toolbox has been fully implemented in Java (Java
applets) technology and hence it can be started from
practically any WWW browser currently in use. Al-
though to use it, it is necessary to install some ’addi-
tional to standard’ software on a client machine. See
sectionInstalationsbelow for details.

For a graphical user interface we used a standard
Java AWT (Abstract Window Toolkit) – the standard
API for providing graphical user interfaces (GUIs)
for Java programs (Java-AWT, 2005). For present-

Figure 6: The Java based version. One may see, in nu-
merical format, both input data (Initial state(s), Initial pass
profile(s)) and results of simulation (States, Outputs). For
visible reasons, unnatural small number of passes = 2 was
used. A discrete MIMO process (2 inputs, 1 state, 2 outputs)
was simulated. Initial pass profiles are a square function and
a sine function.

ing graphical results of simulations we used a Java3D
library – the library for creation of three-dimensional
graphics applications and Internet-based 3D applets
(Java 3D, 2005).

For matrix operations we use JAMA package
(JAMA, 2005). JAMA is a basic linear algebra pack-
age for Java. It provides user-level classes for con-
structing and manipulating matrices. It seems that it
is intended to serve as the standard matrix class for
Java.

Due to space limitations we omit Java code exam-
ples. They are however available on request from the
authors.

In the Java based version only the basic discretiza-
tion methods for converting a continuous process to

its discrete-time equivalent have been implemented.
The following methods have been implemented: for-
ward, backward, trapezoidal, which seems to be
enough for educational purposes. See (Gramacki
et al., 2002) for more details and methods.

3 COMPARISON OF JAVA AND
MATLAB VERSIONS

Although the Java version of the toolbox seems to be
enough for student’s needs, some additional possibil-
ities are accessible only in Matlab based version. In
Table 1 we enumerate those that are important from
user’s point of view. Some limitations are due to Java
applets technology used.

Table 1: Comparison of Java and Matlab besed versions of
the toolbox

Feature Java version Matlab version

Maximum number

of simulated passes

limited unlimited

Maximum pass

length

limited unlimited

Support for ex-

tended initial

conditions (3)

no yes

Support for user de-

fined control, initial

and boundary con-

ditions

no, only predefined

values

yes, predefined val-

ues and/or any val-

ues taken from the

Matlab’s workspace

Predefined system

matrices

yes no, but user may

read them from mat-

files and/or from the

Matlab’s workspace

Stability analysis no yes, for SISO case

only

Number of dis-

cretization methods

4 14

Plot modes 3D, useful in analy-

sis of a whole

process

3D and 2D, 2D case

useful in analysis of

a single pass

Plot of a subset of

simulated points /

passes

yes yes

Calculation of a hor-

izontal and vertical

pass profiles

no yes

Results in numerical

form

yes, available

in Java applet’s

window

yes, available in the

Matlab’s workspace

Precision of calcula-

tions

fixed, 52 bits of

mantissa

variable, 1 to 52 bits

of mantissa
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4 CONCLUSIONS, FUTURE
WORKS AND INSTALLATION

4.1 Conclusions

The paper shortly presents two computer tools suc-
cessfully used in teaching activities of rather complex
multidimensional systems - repetitive processes. Af-
ter an introduction of repetitive processes, the main
functionality of these tools have been given.

The two versions, based on Matlab and Java, differ
rather considerably. This was intentionally assumed.
A Java based version is intended for a wider fam-
ily of users. It is freely available from the Internet
and although shows only basic features of repetitive
processes, it seems to be enough for a starting point.

The Matlab based version is intended for a more
professional family of users. It seems to be a proper
tool in assisting of research in a field of repetitive
process and nD systems in general.

4.2 Future Works

At the moment, the Matlab based version of the tool-
box supplies much more functionality than its Java
based equivalent. It may be purposeful to enrich
somehow the last. However due to some real Java
applets limitation, not all changes will be possible
to implement. A plain Java program may also be
considered. They are also works going on to mi-
grate the Matlab based version to non-commercial
and free package for scientific and numerical compu-
tations Scilab (Scilab, 2005).

4.3 Instalation and Availability

In order to work with the applet it is necessary to in-
stall locally a Java Runtime Environment (JRE) which
allows end-users to run Java applications.

It is also necessary to install the Java3D pack-
age which enables the creation of three-dimensional
graphics and Internet-based 3D applets. One may
download it for free for Windows (Java 3D, 2005)
(first look for something likeDownload Java 3D x.y.z
softwarewhere x.y.z is a release number and then look
for something likeJava 3D for Windows (OpenGL
Version) Runtime for the JRE). A version for Linux
is also available for free.

Due to Java applets properties / limitations, to use
for example a system clipboard sometimes it is nec-
essary to change yourjava.policysettings. See your
browser documentation for details. A reader may fa-
miliarize with the toolbox by visiting the page
http://www.uz.zgora.pl/˜jgramack/
LRP/lrp.html .
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