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Abstract: A new approach for the identification and control of distributed parameter systems is presented in this 
paper. A radial basis neural network is used to model the distribution of the system output variables over 
space and time. The neural network model is then used for synthesizing a non linear model predictive 
control configuration. The resulting framework is particular useful for control problems that pose 
constraints on the controlled variables over space. The proposed scheme is demonstrated through a tubular 
reactor, where the concentration and the temperature distributions are controlled using the wall temperature 
as the manipulated variable. The results illustrate the efficiency of the proposed methodology. 

1 INTRODUCTION 

In distributed parameter systems (DPS) inputs, 
outputs as well as parameters may change 
temporally and spatially due to diffusion, convection 
and/or dispersion phenomena. Such systems are 
quite common in chemical industries (tubular 
reactors, fluidized beds and crystallizers) and are 
mathematical described by systems of partial 
differential equations (PDE), where time and spatial 
coordinates are the independent variables.  

The conventional approach for the synthesis of 
implementable control schemes for DPSs is based on 
methodologies that reduce the infinite order model 
to a finite (low) order model, which can capture the 
dominant behavior of the system. A comprehensive 
analysis of the recent developments in this direction 
can be found in Christofides (2001a). The most 
common approach found in the literature for an 
accurate model reduction implements a linear or a 
non linear Galerkin method to derive ODE systems 
that capture the slow (dominant) modes of the 
original DPS. In Christofides (2001b) one can find 
the analytical description of the linear Galerkin 
procedure as well as the nonlinear model reduction 
method which implements the concept of 
approximate inertial manifold. The resulting models 
are then used for synthesizing low dimensional 
robust output feedback controllers for quasi linear 
and nonlinear parabolic systems (Christofides and 

Daoutidis, 1996; 1997; Christofides, 1998; 
Shvartsman and Kevrekidis, 1998; Christofides and 
Baker 1999; Chiu and Christofides, 1999; El-Farra 
et al., 2003; El-Farra and Christofides, 2004).  

However, the analytical solution of the 
eigenvalue problem of the spatial differential 
operator is not always possible and consequently the 
selection of the appropriate basis to expand the 
PDEs is not an easy task. A systematic data driven 
methodology to address this problem is the 
Karhunen-Loève expansion (KL), also called proper 
orthogonal decomposition (POD) or empirical 
eigenfunctions (EEF) or principal component 
analysis. The KL expansion uses data snapshots and 
constructs the empirical eigenfunctions as a linear 
combination of those snapshots (Newman, 1996a; 
1996b; Chatterjee, 2000). The resulting EEFs have 
been used as basis functions in the Galerkin 
procedure in a number of publications for accurate 
modelling and control in one-dimensional or two-
dimensional systems. (Park and Cho, 1996a; 1996b; 
Park and Kim, 2000; Baker and Christofides, 1999; 
Shvartsman and Kevrekidis, 1998; Armaou and 
Christofides, 2002;) 

The Galerkin procedure, mentioned so far uses 
analytical or empirical eigenfunctions and requires 
the mathematical description of the process, namely 
the exact system of PDEs. In case the PDEs are 
unknown, Gay and Ray (1995) proposed an 
identification procedure based on input-output data. 
The methodology employs integral equation models 
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to describe the DPS and the singular value 
decomposition (SVD) of the integral kernel to 
produce an input/output model, suitable for model 
predictive control (MPC) methodologies. A 
comparison of the efficiency of this data driven 
model with the methods mentioned earlier can be 
found in Hoo and Zheng (2001). More recently, an 
identification method that combines KL and SVD 
for low order modeling and control have been 
presented (Zheng and Hoo, 2002; Zheng et al., 
2002a; 2002b; Zheng and Hoo, 2004). The discrete 
form of the SVD-KL method has also been used in 
MPC configurations with improved performance, 
comparatively to linear feedback controllers.  

A neural network approach for the identification 
of DPSs has been attempted by Gonzáles-García et 
al. (1998) and more recently a combination of POD 
and neural networks has been proposed by 
Shvartsman et al. (2000). Padhi et al. (2001) used 
two sets of neural networks to map a DPS and a 
discrete dynamic programming format for the 
synthesis of an optimal controller. The same 
concept, also exploiting the POD technique for a 
lower order model, is presented by Padhi and 
Balakrishnan (2003).  

In the present work, a radial basis function 
(RBF) neural network is proposed for the 
identification of non linear parabolic DPSs. RBF 
neural networks are quite popular for lumped system 
modeling because of their comparatively simple 
structure and their fast learning algorithms 
(Sarimveis et al., 2002). In this paper the RBF 
neural network is formulated, so that it is able to 
predict the distribution of the output variables over 
space. This way, an estimation of the system outputs 
is available in any position. The RBF model is then 
implemented in a nonlinear MPC configuration to 
predict the controlled variables in a finite number of 
positions.  

The rest of the article is formulated as follows: 
In section 2 the structure of the RBF neural network 
for DPSs is presented. In section 3 the non linear 
MPC configuration is described in more details. The 
proposed methodology is tested through the 
application described in subsection 4.1 The efficien- 
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Figure 1: A radial basis function neural network of C 
hidden nodes for a distributed parameter system. 

cy of the RBF neural network is examined in 
subsection 4.2 and the controller performance in 4.3. 
In section 5, the final conclusions are summarized.  

2 RBF NEURAL NETWORKS 
FOR MODELING 
DISTRIBUTED PARAMETER 
SYSTEMS 

2.1 Quasi-linear parabolic DPS  

In general, a quasi linear parabolic distributed 
parameter system is described by a set of partial 
differential equations and boundary conditions of the 
form of Eq. (1): 
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where ( ),t zυ  are the state variables, ( ),t zu  the 
manipulated variables and ( ),t zy  the controlled 
variables. G(t,z) is an additional non linear term of 
the model and C(z) is a function determined by the 
location of the sensors. Vectors υo(z) and go(t), gl(t) 
describe the initial and the Neumann boundary 
conditions of the system, respectively.  

2.2 RBF neural network for DPS  

Radial basis function networks are simple in 
structure neural networks that consist of three layers, 
namely the input layer, the hidden layer and the 
output layer. Development of an RBF network based 
on input-output data includes the computation of the 
number of nodes in the hidden layer and the 
respective centers and the calculation of the output 
weights, so that the deviation between the predicted 
and the real values of the output variables, over a set 
of training data, is minimized  

An RBF neural network for modeling a DPS is 
constructed so that it can predict the values of the 
output variables at a specific spatial point (Figure 1). 
The input vector of such network at time point t=kTa 
(where Ta is the sample time) contains past values of 
the input variables and the coordinates in space, 
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where we wish to obtain a prediction:  
( ) ( ) ( ) ( ), 1  2  ... 

TT T Tt z t t t N z⎡ ⎤= − − −⎣ ⎦x u u u  (2) 
 

For simplification we limit our analysis in only 
one dimension in space. Generalization to three 
dimensions is straightforward. 

The neural network output is a vector containing 
the values of the process output variables at the 
location that is specified in the input vector: 
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In the previous equations N is the number of past 

values for the input vector, no is the number of the 
process output variables, C is the number of hidden 
nodes, wc is the weight vector corresponding to the 
output of the cth node, f is the radial basis function 
and xc is the center of the c node. The method 
utilized to train neural networks in this work is based 
on a fuzzy partition of the input space and is 
described in details in Sarimveis et al. (2002).  

3 NONLINEAR MPC FOR DPS 

The nonlinear MPC configuration that is proposed in 
this work for controlling DPSs, uses the RBF model 
to predict the values of the controlled variables over 
a future finite horizon ph at a number of locations 
ns, where measurements are available. Then, an 
optimization problem is solved, so that both the 
deviations of the controlled variables from their set 
points over the prediction horizon and the control 
moves over a control horizon ch, are minimized. The 
objective function is of the following form: 
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where ( ), |jt k z t
∧

+y  is the prediction made at time 
point t for the output vector at time t+k and at 
location zj, ns is the number of sensors, ( ), |jt z td  is 
the estimated disturbance at time point t, considered 

constant over the prediction horizon and sp
jy is the 

set point at the location of the j sensor. For 
k=ch,…,ph the manipulated variables are considered 
to remain constant. Wk and Rk are weight matrices 
of appropriate dimensions.  

4 APPLICATION 

4.1 Description of the process 

One typical distributed parameter system in 
chemical engineering is a tubular reactor, where 
variables depend on both time t and reactor length z. 
The mass and energy balances, concerning a first 
order reaction, diffusion and convention phenomena, 
are described by two quasi-linear PDEs with 
Neumann boundary conditions (Eqs. (9-(12)). 
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where ( ),T t z , ( ),c t z  are dimensionless temperature 
and concentration respectively inside the reactor, 
( )iT t , ( )ic t  are dimensionless temperature and 

concentration at the entrance of the reactor and 
( ),wT t z  is the wall temperature. The values of the 

parameters of Eqs. (9)-(12) can be found in previous 
publications (Hoo and Zheng, 2001; 2002). 

4.2 RBF model efficiency 

An input-output training set was created using the 
wall temperature Tw, at z= [0 0.33 0.66] as the 
manipulated variable, while the output variables 
(temperature and concentration) were recorded at 21 
spatial locations. The PDEs were solved using the 
PDE Matlab toolbox. More specifically, we 
simulated the system by changing randomly the 
input variables and recording the output responses 
using a sample period of Ta=0.5 time units. The 
training set consisting of 2000 data points was 
generated considering N=3 past values of each 
manipulated variable. Deviation variables were used 
by subtracting from all the input and output values 
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the corresponding steady states. Several neural 
network structures were developed by changing the 
initial fuzzy partition in the fuzzy means training 
algorithm. The produced neural networks were 
tested using a new validation data set of 500 data 
that was developed in the same way with the training 
set, but was not involved in the training phase. The 
sum of squares errors (SSEs) for the different RBF 
structures are presented in Table 1. In Figure 2, the 
actual values and the predictions of the neural 
network consisting of 152 nodes are compared.  

Table 1: Performance of RBF neural networks 
Hidden nodes C SSE T SSE c 

13 0.2012 0.8873 
27 0.1251 0.7523 
68 0.0535 0.3628 
86 0.0404 0.2232 

152 0.0332 0.1420 
207 0.0295 0.1104 
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Figure 2: Actual values and predictions of the deviation 
variables for a neural network consisting of 152 hidden 
nodes 

4.3 MPC performance 

To test the proposed MPC configuration, we first 
simulated the example presented in Zheng and Hoo 
(2002). In that case, the temperature is the only 
controlled variable at z=[0:0.25:1] where we assume 
that sensors are available, while concentration is 
measured at z=1 but is not controlled. A disturbance 
is introduced to the system by decreasing the feed 
concentration Ci by 5%. We tested the proposed 
MPC scheme using for prediction the RBF network 
that consists of 27 nodes and the following 
parameter values: ch=6, ph=10, W=1, R=5·I3. The 
optimization problem that was formulated at each 
time instance was solved using the fmincon Matlab 

function. The performance of the controller is 
depicted in Figure 3, where the temperature 
distributions at the initial steady state and after 7 
time units are compared. The responses at locations 
where sensors are available are also presented in the 
same figure. The proposed controller managed to 
reject the disturbance and produce zero steady state 
error. The obtained responses outperform the 
performances of a PI controller and an MPC 
configuration that utilizes the SVD-KL model. The 
responses of the two controllers are presented in 
Hoo and Zheng, (2002) and are not shown here due 
to space limitations. The temperature at the exit of 
the reactor returns to its initial value after 1.5 time 
units, while 6 time units are required by the system 
to produce zero steady state error along the length of 
the reactor.  
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Figure 3: The final temperature distribution and the 
dynamic response to a 5% decrease in Ci using the RBF 
model 
 

A second performance test forces the system to 
reach a new steady state distribution. The actual 
steady state, where the temperature finally settles, is 
compared with the desired set point in Figure 4. The 
dynamic responses at locations where sensors are 
available are also presented in the same figure. The 
responses show that the system approaches the 
desired values quickly, avoiding overshoots. The 
behavior of the manipulated variables is depicted in 
Figure 5.  

The last simulation presented in this work uses 
concentration at the reactor exit as an additional 
controlled variable. As far as the temperature profile 
is concerned, the target is to reach the same set point 
change as previously. Figures 6 and 7 present the 
responses of the temperature (at locations where 
sensors are available) and the concentration (at the 
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reactor exit) respectively. They also present the final 
distribution of both variables, after 20 time units. 
Figure 8 depicts the control actions over time. It is 
obvious that due to the additional controlled variable 
the performance of the controller is slightly 
deteriorated as far as the dynamic behavior is 
concerned. However, the desired steady state is still 
approached satisfactorily. 
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Figure 4: The temperature distribution after 15 time units 
and the dynamic response to a set point change 
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Figure 5: The manipulated variable Tw(t) at z=0, 0.33 and 
0.66 

5 CONCLUSIONS 

A nonlinear input/output identification method for 
distributed parameter systems is proposed is this 
paper. An RBF neural network capable to predict the 
output variables over space is developed. The 
accuracy of the neural network was established 
through a tubular reactor simulation. The model is 
then used for the synthesis of a MPC configuration 
that minimizes the deviation of the prediction of the 
controlled variables at a finite number of positions, 

where a sensor is assumed to exist. The proposed 
method produced satisfactory results in both 
disturbance rejection and set point change problems. 
The performance of the controller was found to be 
superior to PI controllers or linear MPC 
configurations presented in former publications.  
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Figure 6: The temperature distribution after 20 time units 
and responses to a set point change when considering 
c(t,1) as an additional controlled variable 
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Figure 7: The concentration distribution after 20 time units 
and the response of c(t,1) 
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Figure 8: The manipulated variable Tw(t) at z=0, 0.33 and 
0.66 when considering c(t,1) as an additional controlled 
variable 
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