Periodic and Metallic Nano-structures Patterned by Contact Transfer Lithography with Application on Localized Surface Plasmon Resonance

Hao-Yuan Chung, Chun-Ying Wu, Yung-Chun Lee

2015

Abstract

In this study, we demonstrate a rapidly, low cost, and mass production process to fabricate arrayed metallic nanoparticles on a variety of substrates based on contact transfer and metal mask embedded lithography (CMEL). A hexagonal arrayed metallic nanoparticles deployed on ITO/glass substrate with sub-micron periodicity is achieved. It is observed in optical transmittance measurements that noble metallic arrayed nanoparticles deployed on ITO/glass substrate result in a spectrally narrowband of extinction in visible range, and is in good agreement with the simulated results using finite-element method (FEM). It is found that the narrowband extinction spectrum is associated with electromagnetic field coupling between the arrayed metallic nanostructures and the ITO layer. This electromagnetic field coupling induces significant plasmon resonance in the ITO layer underneath the arrayed metallic nanostructures. Based on this observed phenomenon and our innovative large-area nano-fabrication processes, optoelectronic devices with arrayed metallic nanostructures can be easily designed and developed.

Download


Paper Citation


in Harvard Style

Chung H., Wu C. and Lee Y. (2015). Periodic and Metallic Nano-structures Patterned by Contact Transfer Lithography with Application on Localized Surface Plasmon Resonance . In Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS, ISBN 978-989-758-092-5, pages 20-25. DOI: 10.5220/0005333500200025

in Bibtex Style

@conference{photoptics15,
author={Hao-Yuan Chung and Chun-Ying Wu and Yung-Chun Lee},
title={Periodic and Metallic Nano-structures Patterned by Contact Transfer Lithography with Application on Localized Surface Plasmon Resonance},
booktitle={Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,},
year={2015},
pages={20-25},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005333500200025},
isbn={978-989-758-092-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,
TI - Periodic and Metallic Nano-structures Patterned by Contact Transfer Lithography with Application on Localized Surface Plasmon Resonance
SN - 978-989-758-092-5
AU - Chung H.
AU - Wu C.
AU - Lee Y.
PY - 2015
SP - 20
EP - 25
DO - 10.5220/0005333500200025